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Goal of the training

The goal of this training is to:

Provide an overview of fundamental statistical models and methods for the analysis of
longitudinal data, including key theoretical results presented.

Focus on the practical implementation of these methods in R .

Help trainees gain a comprehensive understanding of the properties and use of
modern methods for longitudinal data analysis.

Enable trainees to pose scienti�c questions within the context of appropriate
statistical models and carry out and interpret analyses e�ectively.
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Primary Objectives ... (1)

Understand how longitudinal data di�ers from cross sectional data.

Explain the consequences of ignoring correlated observations.

Appreciate the merits of longitudinal data analysis.

Apply graphical techniques to explore repeated/dependent/clustered data.

Discuss di�erent model families.

Analysis and interpret results from longitudinal studies.
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Primary Objectives ... (2)

Understand LDA Models for Gaussian and non Gaussian data.

Be familiar with theoretical background of statistical techniques used for analyzing
longitudinal and handling of missing data.

Translate statistical theory into practical application.

Prepare scienti�c reports describing methods used for analysis, results obtained and
their interpretation.

Communicate methods used and the clinical/scienti�c meaning of the results from a
longitudinal data analysis and defending their analysis.

6 / 220



Primary Objectives ... recap

Understand the e�ect of non-independence in longitudinal data.

Recognize limitations of classical analysis methods in longitudinal studies.

Explore and analyse the marginal distribution of longitudinal data.

Learn and apply methods for analyzing continuous outcomes using linear mixed
e�ects models.

Utilize methods for analyzing discrete data in longitudinal studies using GEE and
GGLMM.

Gain knowledge about missing data mechanisms and techniques for handling them.

Statistical computing packages: R, Stata and SAS
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Introduction to longitudinal data analysis

Repeated measures ... (1)

Statistical techniques like ANOVA and regression have a basic assumption that the
residual or error terms are independent and identically distribution (iid).

In applied sciences, often confronted with the collection of correlated data.

The term embraces a multitude of data structures such as multivariate
observations, clustered data, repeated measurements,longitudinal data &
spatially correlated data.

The distinguishing feature of repeated data is that they are correlated.
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Repeated measures ... (2)

Familiar examples of clustered data are families, schools, hospitals, towns, litters, ...

In each of these examples, a cluster is a collection of sub units on which
observations are made.

Another form of clustering arises when data are measured repeatedly on the same
unit.

When these repeated measurements are taken over time, it is called a longitudinal
study (panel data).

When the correlation occurs over space, it is called a Spatial study.
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Longitudinal data

Special forms of repeated measurements.

Longitudinal Studies: Studies in which individuals are measured repeatedly through
time.

Longitudinal data (LD) sets di�er from time Series (TS) data sets.

LD: usually consists of a large number of a short series of time points.

TS: usually consists of a single, long series of time points.

Examples of LD:

Monthly CD4 count (viral load) of a patient over time.

Psychological change of a patient.

The e�ect of a treatment to cure a disease over time.
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Features of longitudinal data

De�ning feature of longitudinal studies is that measurements of the same individuals
are taken repeatedly through time.

Longitudinal studies allow direct study of change over time.

Objective: to characterize the change in response over time and factors that in�uence
change.

With repeated measures on individuals, we can capture within-individual change.

In longitudinal studies, the outcome variable can be:

Continuous (e.g., blood lead levels).
Binary (e.g., presence/absence).
Count (e.g., number of epileptic seizures).

The data set can be incomplete (missing data/dropout).

Subjects may be measured at di�erent occasions.

In this module we will master a set of statistical tools that can handle all of these 12 / 220



Famous LD examples ... (1)

The Baltimore Longitudinal Study of Aging (BLSA)

BLSA: Ongoing, multidisciplinary observational study, started in 1958

Objective : characterize the many aspects of the aging process and learn how people
can adapt to aging

Volunteers return approximately every 2 years for 3 days of biomedical and
psychological examinations

at �rst only males (over 1500 by now), later also females

an average of about 20 years of follow up

NCT00233272
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Famous LD examples ... (2)

Indonesian children’s health study (ICHS)

Interest is to investigate the association between risk of respiratory illness and
vitamin A de�ciency

250 children followed

Multivariate data have received most attention in the stat. literature.

Remarkable developments in statistical methodology for LDA have been done in the
past 30 years.
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Advantages of modern longitudinal methods ... (1)

You have much more �exibility in research design.

Not everyone needs the same rigid data collection schedule.
Not everyone needs the same number of measurements—can use all cases, even
those with just one measurement!

You can identify temporal patterns in the data.

Does the outcome increase, decrease, or remain stable over time?
Is the general pattern linear or non-linear?
Are there abrupt shifts at substantively interesting moments?

You can include time-varying predictors.

Can provide information about individual change.
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Advantages of modern longitudinal methods ... (2)

You can include interactions with time (to test whether a predictor’s e�ect varies over
time).

Some e�ects dissipate—they wear o�.
Some e�ects increase—they become more important.
Some e�ects are especially pronounced at particular times.

Can provide more e�cient estimators than cross-sectional designs with the same
number and pattern of observations.

Can separate aging e�ects (changes over time within individuals) from cohort e�ects
(di�erences between subjects at baseline) ⇒ cross-sectional design can’t do this.
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Challenges of Longitudinal Data Analysis

Observations are not, by de�nition, independent → must account for dependency in
data.

Analysis methods not as well developed, especially for more sophisticated models.

Di�culty of using state-of-the-art software.

Computationally intensive.

Unbalanced designs, missing data, attrition.

Carry-over e�ects (when the repeated factor is condition or treatment, not time).
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Recap:

Longitudinal studies:
Measurements of the same individuals are taken repeatedly through time.
Allow direct study of change over time.
We can capture within-individual change.

Objective: to characterize the change in response over time and factors that in�uence
change.
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Motivating examples

The Jimma Infant Survival Data

A follow-up study of newborn infants in Southwest Ethiopia.

Wide ranges of data were collected on the following characteristics:

Basic demographic information.
Feeding practice.
Anthropometric measurements.

Infants were followed for 12 months.

Measurements were taken at seven time points from each child.

library(readxl)
Infant <- read_xls("Data/Infant.xls")
Infant$sex <- factor(Infant$sex, levels= c(1, 0), labels= c("male", "female"))
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##   Time   N Percentage
## 1    0 971      100.0
## 2    2 949       97.7
## 3    4 894       92.1
## 4    6 857       88.3
## 5    8 833       85.8
## 6   10 811       83.5
## 7   12 784       80.7

Infants were followed during 12
months.
Measurements were taken at seven
time points from each child, resulting
in a maximum of seven
measurements per subject.
For our purpose, we will consider the
variable weight.
Due to a variety of reasons, 80.7%
continues up to the end of the study.

library(dplyr)
output <- table(Infant$age) %>%
  as.data.frame() %>%
  mutate(Time = as.numeric(as.character(Var1)),
         N = Freq,
         Percentage =round((Freq/Freq[1])*100,1)) %>%
  select(Time, N, Percentage)
print(output)
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The Income Dynamics (PSID) Study

The Panel Study of Income Dynamics (PSID) began in 1968 and is still continuing.
It is the longest-running longitudinal household survey in the world.
The PSID is a longitudinal study of a representative sample of U.S. individuals.
The data that represents a small subset of this data (1661 observations) is available in
R software under the library "faraway".
Variables included in the dataset: Age, Education (years of education), Sex, and Annual
Income.

The Question of Interest

The PSID dataset raises the following questions:

Is there a change in income over the years?
Is there variation in income by sex?
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PSID: Pro�le Plots for 20 Subjects

library(faraway);library(lattice)
data(psid)
mypsid<-subset (psid, (subset=(person <4)))
mypsid1<-subset(mypsid, (subset=(year < 75)))
xyplot(income ~ year , psid, type="l", subset=( person < 20),strip=TRUE)

In the PSID dataset, some individuals have a slowly increasing income, while others
have more erratic incomes.
There is small variation at the beginning compared to the end.
Income may possibly vary by sex, so we may need pro�le plots by sex. 22 / 220



PSID: Pro�le of Income by Sex

xyplot(income ~ year | sex, psid, type="l", subset=( person < 500),strip=TRUE)

The variation for males is higher than that of females.
Income data for males is more erratic.
Variation at the beginning is smaller than the variation at the end for both groups.
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Orthodontic Growth Data

Taken from Pottho� and Roy, Biometrika (1964).

The distance from the center of the pituitary to the maxillary �ssure was recorded at
ages 8, 10, 12, and 14, for 11 girls and 16 boys.

Data were collected by orthodontists from x-rays of the children’s skulls.

108 total records were grouped into 27 groups by Subject.

This is an example of balanced repeated measures data, with a single level of
grouping (Subject).

Research question: Is dental growth related to gender?
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The Orthodontic Growth Data: Individual Pro�les by Sex

library(readr); library(dplyr)
growth <- read_csv("Data/growth2.csv") 
  growth$age <- as.factor(growth$age); 
  growth$Sex <- factor(growth$sex, levels= c(1, 2), labels= c("male", "female"))
 growth %>%  xyplot(measure ~ age|Sex, data = ., groups = ind, type = "l",
         xlab ="age",ylab= "distance")

Much variability between children and considerable variability within children.
Fixed number of measurements per subject and measurements taken at �xed time
points. 25 / 220



The Orthodontic Growth Data: Mean Distance Pro�le by Sex

mean1<-tapply(growth$measure, growth$age, mean)
age1<-as.numeric(unique(growth$age)) %>% sort()
plot(age1, mean1, type="l",ylim=c(20,30), xlab="age", ylab=" The mean distance", 
     lwd=3, main=" The mean profile of the growth data set")

The relationship between age and distance appears to be linear.

It appears that there is a linear growth pattern.
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Cross-sectional versus longitudinal data

Cross-sectional data and longitudinal data are two primary types of data used in statistical
analysis:

Cross-sectional data: Collected at a speci�c point in time and involves observations of
di�erent individuals at that particular time.

Longitudinal data: Collected over an extended period, involving repeated observations
of the same individuals over time.
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t-test example

Diastolic Blood Pressures (DBP) from the Captopril Data

Consider the DBP.

It includes 15 patients with hypertension.

The response of interest was the supine blood pressure before and after treatment
with CAPTOPRIL.

Research question: How does treatment a�ect BP?
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library(tidyverse)
before <- c(130, 122, 124, 104, 112, 101, 121, 124, 115, 102, 98, 119, 106, 107, 100)
after <- c(125, 121, 121, 106, 101, 85, 98, 105, 103, 98, 90, 98, 110, 103, 82)
data <- data.frame( group = rep(c("Before", "After"), each = 15),
  dbp = c(before, after))
paired <- data %>% group_by(group) %>%summarize(Mean = mean(dbp),  N = n(),
      Std_Deviation = sd(dbp), Std_Error_Mean = sd(dbp)/sqrt(n()))
print(paired)

## # A tibble: 2 × 5
##   group   Mean     N Std_Deviation Std_Error_Mean
##   <chr>  <dbl> <int>         <dbl>          <dbl>
## 1 After   103.    15          12.6           3.24
## 2 Before  112.    15          10.5           2.70

Paired data analysis: Examines related variables within the same subjects.
DBP: Analysed before and after treatment.
Average decrease: More than 9 mmHg after treatment.
Classical analysis: Compares measurements within each subject/participant.

Focus: Changes from before to after treatment.
Testing for treatment e�ect: Assesses if the average di�erence equals zero.
Paired observations: The simplest case of longitudinal data
Much variability between subjects

di = Yi1 − Yi2, i = 1, 2, . . . , 15
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Unpaired, two sample t-test

What if we had ignored the paired nature of the data?
We then could have used a two sample (unpaired) t test to compare the average BP of
untreated patients (controls) with treated patients.
We would still have found a signi�cant di�erence (p= 0.0377), but the p value would
have been more than 30 30×larger compared to the one obtained using the paired t
test (p=0.001).

Conclusion:

The two sample t test does not take into account the fact that the 30 measurements
are not independent observations.
Illustration: classical statistical models which assume independent observations will
not be valid for the analysis of longitudinal data
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Cross-sectional vs longitudinal data

Cross-sectional data refers to the data collected at a speci�c point in time.
Observations from cross-sectional data are uncorrelated.
Longitudinal data refers to measurements made repeatedly over time to study how
the subjects/patients/participants evolve over time.

That means the concern of longitudinal data analysis is change over time.
In longitudinal study, the measurements made for participants over a period of time
are correlated.
Suppose it is of interest to study the relation between some response Y and age.
A cross-sectional study yields the following data:

Graph suggesting a negative relation between Y and age
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Cross-sectional vs longitudinal data

Exactly the same observations could also have been obtained in a longitudinal study,
with 2 measurements per subject.
First case:

Graph suggesting a negative cross-sectional relation but a positive longitudinal trend
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Cross-sectional vs longitudinal data

Second case:

Graph suggesting the cross-sectional as well as longitudinal trend to be negative.

Conclusion: Longitudinal data allow distinguishing di�erences between subjects from
changes within subjects.
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Wide format of data

Subject
Time
1 (y)

Time
2 (y)

Time
3 (y)

Time
1 (x)

Time
2 (x)

Time
3 (x)

1 10 6 6 4 4 4

2 7 5 3 2 2 2

3 12 9 8 6 6 6

4 11 14 16 8 8 8

# Using pivot_wider 
wide_data <- long_data %>%
pivot_wider(names_from = Time, 
          values_from = c(y, x))

Long format of data

subject time y x

1 1 10 4

1 2 6 4

1 3 6 4

2 1 7 2

2 2 5 2

2 3 3 2

3 1 12 6

3 2 9 6

3 3 8 6

4 1 11 8

4 2 14 8

Longitudinal data: wide/broad form
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Longitudinal data

With LD: multiple measurements taken on each subject.
You not only can examine the di�erences between subjects, but you can also examine
the change within subjects across time.
The number of observations is not the number of subjects but rather the number of
measurements taken on all the subjects.
There are three repeated measurements on each subject, you now have 12
observations.
How does this change your variance-covariance matrix?
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Variance-covariance matrix for longitudinal data

3 repeated measurements on each subject:
We now have 12 observations and a 12x12 variance-covariance matrix.

For a simple longitudinal model, the matrix is a block-diagonal matrix.
The matrix is a block-diagonal matrix:

Observations within each block are assumed to be correlated.
Observations outside of the blocks are assumed to be independent (subjects are
still assumed to be independent of each other).
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Introduction to longitudinal data analysis

Longitudinal data: data in the form of repeated measurements over time or other
factors on each individual or unit in a sample from a population of interest.

Examples:

Weekly measurements of growth on experimental plots with di�erent fertilizers.
Monthly measurements of viral load on HIV-infected patients with di�erent treatment
regimens.

De�ning Characteristic

The same response or outcome is measured repeatedly on each unit.

Scienti�c Questions

How mean response di�ers across treatments or other factors.
How the change in mean response over time di�ers.
Other features of the relationship between response/outcome and time.
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Required statistical model

A statistical model that acknowledges this data structure in which the questions can be
formalized and associated specialized methods of analysis based on the model.

Longitudinal data/studies have become increasingly common and widespread across
various scienti�c disciplines.

Terminology

Longitudinal data refers to data in the form of repeated measurements that might be
over time but could also be over some other set of conditions.
Time is most often the condition of measurement.
"Response" and "outcome" are used interchangeably to denote the repeated
measurement or outcome of interest.
"Participant", "Unit", "individual" and "subject" are used interchangeably to refer to
the entity being measured.

Applications

We consider several applications that exemplify longitudinal data situations and the range
of ways data are collected and types of responses and questions of interest. 38 / 220



Simple methods

Introduction
Overview of frequently used methods

Summary statistics
Practical using R
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Simple methods: introduction

The reason why classical statistical techniques fail in the context of longitudinal data is
that observations within participants are correlated.

often the correlation between two repeated measurements decreases as the time
span between those measurements increases

The paired t-test accounts for this by considering participant speci�c di�erences

This reduces the number of measurements to just one per participant, which
implies that classical techniques can be applied again.

Δi = Yi1 − Yi2
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Overview of frequently used methods

In the case of more than 2 measurements per participant, similar simple techniques
are often applied to reduce the number of measurements for the  participant, from

 to .

Some Examples:

Analysis at each time point separately

Analysis of Area Under the Curve (AUC)

Analysis of endpoints

Analysis of increments

Analysis of covariance

ith

ni 1
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Sesame data

Cross-year by locations trial of sesame genotypes

Sesame is a short day plant & sensitive to photo-period, temperature, and moisture
stress.

The yield is reported to vary across years and locations.

Variation in rainfall could lead to the change of yield across locations.

The study area was characterized by uni-modal rainfall pattern

low in amount, short in duration, and poor in distribution within a short distance.

To examine the e�ect of Genotype X Environment Interaction, 13 genotypes were
tested across three locations over three years.

Aim: to see the change in yield of di�erent genotypes over years.

42 / 220



The sesame Data

Three years average yield over the three locations by thirteen genotypes
Sesame Data: Pro�le plot by Year and Location
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Fixed # of measurements per
genotypes

It seems that the yield on the �rst
year is >> yield on the  year for the
majority of the observations.

Some lines on the plot show an
increasing trend

Some genotypes have a larger yield
than others

Variability between genotypes

Variability within genotypes

May be it is good to see the mean
pro�le plot by location

Sesame Data: Pro�le plot by Year and Location

2nd
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Mean pro�le of sesame yield by location

Area2: the mean yield is almost constant over time

Area1 & Area3: the mean yield decrease from Yr 1 to Yr 2 and then increase to Yr 3.
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Overview of frequently used methods

1. Analysis at each time point separately

The data are analysed at each occasion separately.

Example: Use the sesame data set to analyze the number of days to maturity using
one-sample t-test for each location at each time point.
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Summary of Days to Maturity

A simple summary of days to maturity for each location at a given time point.

Comparison of di�erent locations for year 1.

Performed two-sample t-test, despite having three locations.

Problem of multiple testing since multiple t-tests are used!
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Why is multiple testing problem?

Multiple testing: Conducting multiple t-tests leads to in�ation of Type I error.

Experiment-wise Type I error rate: Probability of falsely rejecting at least one null
hypothesis among multiple tests.

 one trial in 20 will falsely claim that a di�erence exist when there is
none

Let’s consider a case where you have 20 hypotheses to test at a signi�cance level of
0.05.

Prob . at least one sig. result (experiment wise Type I error rate)

 with 20 tests being considered, we have a 64% chance of observing at least one
signi�cant result, even if all of the tests are actually not signi�cant

α = 5% ⟹

= 1 − (1 − α)20 = 0.64

⟹
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Experiment wise Type I Error

# of Comparisons (K) Experiment-wise Type I Error

1 0.05

2 0.0975

3 0.1426

5 0.2262

With 5 tests at 5% signi�cance level, there's a 22.6% chance of observing at least one
signi�cant result even if all tests are not signi�cant.

If 3 comparisons are performed at 5%, the overall signi�cance will be increased more
that 14%

Increasing the number of comparisons also increases the overall signi�cance.
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Experiment-wise Type I Error

Advantages of Analysis at Each Time Point

Simple to interpret.
Uses all available data.

Disadvantages of Analysis at Each Time Point

Does not consider overall di�erences.
Does not allow studying evolutionary di�erences.
Problem of multiple testing.
Possible issues with missing data.
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Analysis of Area Under the Curve (AUC)

For each participant, the area under its curve is calculated:

Afterwards, these  are analyzed

Ex: we use the days to CFU data to calculate the area under the curve.

Advantages

no problems of multiple testing
does not explicitly assume balanced data
compares ‘overall’ di�erences

Disadvantage

uses only partial information: 
participants could have the same AUC but completely di�erent pro�les
possible problems with missing data

AUCi = (ti2 − ti1) ∗ (yi2 − yi1)/2 + (ti3 − ti2) ∗ (yi3 − yi2)/2+. . .

AUCi

AUCi
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Analysis of endpoints

General Idea : Assess di�erences only on the last time point

In randomised studies, there are no systematic di�erences at baseline.

Hence, ‘treatment’ e�ects can be assessed by only comparing the measurements at
the last occasion

Advantages

no problems of multiple testing
does not explicitly assume balanced data

Disadvantages

uses only partial information
only valid for large data sets
the last time point must be the same for all participants
does not consider ‘overall’ di�erences
possible problems with missing data
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Analysis of increments

A simple method to compare evolutions between participants, correcting for
di�erences at baseline, is to analyze the participant-speci�c changes: 

Advantages

no problems of multiple testing
does not explicitly assume balanced data

Disadvantage

uses only partial information
the last time point must be the same for all participants
possible problems with missing data

yini − yi1

53 / 220



Analysis of covariance

Another way to analyse endpoints, correcting for di�erences at baseline, is to use
analysis of covariance techniques, where the �rst measurement is included as
covariate in the model.

Advantages:

no problems of multiple testing
does not explicitly assume balanced data

Disadvantages:

uses only partial information:  and 

does not take into account the variability of 

yi1 yini

yi1
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Summary Statistics

The AUC, endpoints and increments are examples of summary statistics.

Such summary statistics summarise the vector of repeated measurements for
each participant separately.

This leads to the following general procedure:

Step 1: Summarize data of each participant into one statistic, a summary statistic
Step 2: Analyze the summary statistics, e.g. analysis of covariance to compare
groups after correction for important covariates

This way, the analysis of longitudinal data is reduced to the analysis of independent
observations, for which classical statistical procedures are available.

These techniques are based on extensions of simple regression models for univariate
data
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However, all these methods have the disadvantage that (lots of) information is lost
Further, they often do not allow to draw conclusions about the way the endpoint has
been reached

This has led to the development of statistical techniques that overcome these
disadvantages
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Exploratory data analysis

Introduction

Exploratory analysis comprises techniques to visualize patterns in the data.

Data analysis must begin by making displays that expose patterns relevant to the
scienti�c question.

A linear mixed model makes assumptions about:

mean structure: (non-)linear, covariates, ...
variance function: constant, quadratic, ...
correlation structure: constant, serial, ...
subject-speci�c pro�les: linear, quadratic, ...

In practice, linear mixed models are often obtained from a two-stage model formulation.

However, this may or may not imply a valid marginal model.
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Exploratory data analysis.... (2)

Longitudinal data analysis, like other statistical methods, has two components which
operate side by side:

exploratory and
con�rmatory analysis.

Exploratory analysis comprises techniques to visualize patterns in the data. Con�rmatory
analysis is judicial work, weighing evidence in data for, or against hypotheses.

Data analysis must begin by making displays that expose patterns relevant to the
scienti�c question.

The best methods are capable of uncovering patterns which are unexpected.

In this regard graphical displays are so important. At this stage, the following guidelines
are very useful.
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Jimma infant data ... (1)

Follow-up study of newborn infants in Southwest Ethiopia.

Wide ranges of data were collected on the following characteristics:

basic demographic information,
feeding practice,
anthropometric measurements, ...

Infants were followed during 12 months. Measurements were taken at seven time points
every two months from each child. Weight was one of the variables recorded at each visit.

Research question: How does weight change over time?
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Jimma infant data ... (2)

The individual pro�les support a random-intercepts model

attach(Infant); library(lattice)
mydata1<-as.data.frame(Infant)
xyplot(weight ~ factor(age), group = ind, lty=1 ,  
       data =mydata1[sample(nrow(mydata1), 800),], main="a. Individual profile plot",
       xlab = "Time", ylab = "Weight in kg", type = "a", lines = TRUE)
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Conclusions from the pro�le

Much variability between children

Considerable variability within subjects

Fixed number of measurements per subject

Measurements taken at �xed time points
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Mean pro�le

The mean pro�le can be plotted using the following R code:

mean1<-tapply(Infant$weight, Infant$age, mean, na.rm=T)
age1<-as.numeric(unique(Infant$age))
plot(age1, mean1, type = "l", xlab = "Age", ylab = "Mean Weight", lwd = 2, 
     main = "The Mean Profile")
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Mean pro�le by sex

The mean pro�les by sex:

interaction.plot(Infant$age, sex, Infant$weight, fun = mean, 
                 col = c("red", "blue"), xlab = "Age", ylab = "Weight", las = 1)
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Exploring the random e�ects

The mean structure for linear mixed e�ect model can be determined based on the
random e�ects.

Choosing which parameters in the model should have a random-e�ect component
included to account for between-group variation.

The lmList function and the methods associated with it are useful for this.

Continuing with the analysis of the Jimma infants data, we see from the individual
pro�les of these data that a simple linear regression model of weight as a function of
age may be suitable.
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Jimma infant survival

-The data was �tted this for each subject as follows:

library(nlme)
fit <- lmList(weight ~ age | ind, Infant)
fit

## Call:
##   Model: weight ~ age | ind 
##    Data: Infant 
## 
## Coefficients:
##      (Intercept)           age
## 1       4200.000  2.714286e+02
## 3       5435.714  1.821429e+02
## 4       4435.714  2.392857e+02
## 5       4139.286  3.196429e+02
## 6       4485.714  4.571429e+02
## 7       4400.000  3.428571e+02
## 8       4550.000  3.250000e+02
## 9       3792.857  3.250000e+02
## 10      4635.714  3.821429e+02
## 11      3417.143  5.592857e+02
## 12      3860.714  5.089286e+02
## 14      3407.143  2.607143e+02
## 15      4235.714  3.892857e+02
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Exploring the random e�ects

The main purpose of this preliminary analysis is to give an indication of what random
e�ects structure to use in the model.

We must decide which random e�ects to include in a model for the data, and what
covariance structure these random e�ects should have.

Objects returned by lmList are of class lmList, for which several display and plot
methods are available.

The pairs method provides one view of the random e�ects covariance structure.

To identify outliers-points outside the estimated probability contour at level 

will be marked in the plot, we use the R function.

We see that subject 29 has high slope.

1 − α/2
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Exploring the correlation structure

In longitudinal data analysis we model two key components of the data:

Mean structure
Correlation structure (after removing the mean structure)

Modelling the correlation is important to be able to obtain correct inferences on
regression coe�cients.

Correlation can be formulated in terms of:

Random e�ects
Autocorrelation or serial dependence
Noise, measurement error

After we explore the mean function in the regression, we need to explore the
correlation structure for the residuals, taking away the mean trend e�ect.
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Observed variance for jimma dataset

Having an appropriate model for studying the evolution of the variance is a very
important step in the modeling approach.
The observed variance shows an increase in variability over time.
Hence, a heterogeneous variance structure may be a good starting point.
Moreover, the variability for males and females seems to be more or less the same.
Hence, the same variance structure may be assumed for both groups.

interaction.plot(Infant$age, sex, Infant$weight, fun=var, col=2:3, xlab="age", 
                 ylab="var[wt]", las=1)
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Growth data

The distance from the center of the pituitary to the maxillary �ssure was recorded at
ages 8, 10, 12, and 14, for 11 girls and 16 boys.

Research Question: Is dental growth related to gender?

The individual pro�les support a random-intercepts model.

xyplot(measure ~ factor(age) | sex, group = ind, data = growth, 
       main="Individual profile plot by sex",xlab = "Age", ylab = "measure", 
       type = "a", lines = TRUE)
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From the exploratory analysis:

Mean structure seems linear over time.
Variability between subjects at baseline.
Variability between subjects in the way they evolve.

Hence, a linear mean with random intercept and slope is a good idea...
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Exploring the mean structure of growth data

For balanced data, averages can be calculated for each occasion separately, and standard
errors for the means can be added.

attach(growth)
mean1<-tapply(measure, age, mean)
age1<-sort(as.numeric(unique(age)))
plot(age1, mean1, type= "l",ylim=c(20,30), xlab="age", ylab=
" The mean distance", lwd=3, main="The mean profile")
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##### R-code for Correlation matrix ####
d1<-measure[age==8]
d2<-measure[age==10]
d3<-measure[age==12]
d4<-measure[age==14]
response1<-cbind(d1, d2, d3, d4)
cor_matrix <- cor(response1)
cor_matrix

##            d1         d2         d3         d4
## d1 1.00000000 0.04600947 0.71080794 0.59983380
## d2 0.04600947 1.00000000 0.06913238 0.01175495
## d3 0.71080794 0.06913238 1.00000000 0.79499798
## d4 0.59983380 0.01175495 0.79499798 1.00000000

Scatter plot matrix for growth data
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# Scatter plot matrix
panel.hist <- function(x, ...)
{usr <- par("usr"); on.exit(par(usr))
  par(usr = c(usr[1:2], 0, 1.5) );  h <- hist(x, plot = FALSE)
  breaks <- h$breaks; nB <- length(breaks)
  y <- h$counts; y <- y/max(y)
  rect(breaks[-nB], 0, breaks[-1], y, col="cyan", ...)}
pairs(response1, panel=panel.smooth, cex = 1.5, pch = 16,  bg="light green",
      diag.panel=panel.hist, cex.labels = 2, font.labels=2)
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pmplots::pairs_plot(response1, y = c("d1", "d2", "d3", "d4"), col = "cyan")
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Exploring the Variability of the Observed Data

The individual pro�le plots of the growth data set exhibit substantial variability within
and between subjects.

This intricate variability can be further elucidated by considering the variance-
covariance matrix of the observed data, as indicated below:

By examining the variance-covariance matrix, we gain deeper insights into the
extensive variability present within and between subjects in the growth data set.

Covariance Matrix for Growth Data:

cov(response1)

##           d1         d2        d3         d4
## d1 5.9259259 0.22934473 4.8753561 4.03988604
## d2 0.2293447 4.19301994 0.3988604 0.06659544
## d3 4.8753561 0.39886040 7.9387464 6.19729345
## d4 4.0398860 0.06659544 6.1972934 7.65455840
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Exploring Overall Variability

## Mean evolution profile ##
mean1<-tapply(measure, age, mean)
age1<-sort(as.numeric(unique(age)))
plot(sort(age1), mean1, type= "l",ylim=c(10,32), xlab="age", 
     ylab=" The mean distance", lwd=3, main=" The mean profile")
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Variability by Group

interaction.plot(age, sex, measure, lty=c(1, 2), fun=var,
                 ylab="Distance from Pituitary to Pterygomaxillary Fissure (mm)",
                 xlab="Age", trace.label="Group")
title(main="The Variance of the Growth Data Set by Sex")

77 / 220



Day 2Day 2
A Model for Longitudinal DataA Model for Longitudinal Data

Linear Mixed Models (LMM)Linear Mixed Models (LMM)

Hierarchical versus Marginal ModelHierarchical versus Marginal Model

Marginal Model: Estimation and InferenceMarginal Model: Estimation and Inference

Inference for the Random E�ectsInference for the Random E�ects
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Linear Mixed Models

Linear mixed models (LMM) are models that handle data where observations are not
independent.

That is, LMM correctly models correlated errors, whereas procedures in the general
linear model family (GLM) usually do not.

(GLM includes: t-tests, ANOVA, correlation, regression, and factor analysis, to
name a few.)

LMM can be considered as a further generalization of GLM to better support the
analysis of a continuous response.

Mixed models contain both �xed and random e�ects.

These models are useful in a wide variety of disciplines in the physical, biological, and
economic sciences.

They are particularly useful in settings where repeated measurements are made on
the same statistical units or where measurements are made on clusters of related
statistical units.
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Types of E�ects in Linear Mixed Models

Fixed E�ects

Factors for which the only levels under consideration are contained in the coding
of those e�ects.

Example: Sex where both male and female genders are included in the factor, is
considered a �xed e�ect.
Example: Agegroup with levels "Minor" and "Adult" included in the factor is also
considered a �xed e�ect.

Random E�ects

Factors for which the levels contained in the coding of those factors are a
random sample of the total number of levels in the population for that factor.

Example: Subject can be considered a random e�ect if it represents a random
sample of the target population.

Random e�ects models allow researchers to make inferences over a wider population
in Linear Mixed Models (LMM) than would be possible with Generalized Linear Models
(GLM). 80 / 220



Hierarchical E�ects

Hierarchical designs have nested e�ects.

Nested e�ects are those with subjects within groups. For instance, in a medical
study, "Patients" may be nested within "Doctors," and "Doctors" may, in turn, be
nested within "Hospitals."
We can have a hierarchical e�ect when the predictor variables are measured at
more than one level (ex., reading achievement scores at the student level and
teacher-student ratios at the school level).

Considering hierarchical e�ects in Linear Mixed Models allows researchers to account
for the nested structure of the data and make more accurate inferences about the
relationships between variables at di�erent levels of the hierarchy.
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In Practice: Handling Unbalanced Data

Often, data is unbalanced:

Unequal number of measurements per subject
Measurements not taken at �xed time points

As a result, traditional multivariate regression techniques may not be applicable.

Subject-Speci�c Pro�les

Subject-speci�c longitudinal pro�les can be well approximated by linear regression
functions.

A 2-stage model formulation is common:

1. Stage 1: Linear regression model for each subject separately.

2. Stage 2: Explaining variability in subject-speci�c regression coe�cients using
known covariates.
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Stage 1 Model

 is a  matrix of known covariates.

 is a  dimensional vector of subject-speci�c regression coe�cients.

.

Often, .

This model describes the observed variability within subjects.

Yi = Ziβi + εi

Yi = (Yi1,Yi2, . . . ,Yini)
′

Zi ni × q

βi q

εi ∼ N(0, Σi)

Σi = σ2INi
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A 2-stage Model

Between-subject variability can now be studied by relating the  to known covariates.

Stage 2 model:

 is a  matrix of known covariates.

 is a -dimensional vector of unknown parameters.

.

βi

βi = Kiβ + bi

Ki q × p

β p

bi ∼ N(0,D)
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The General Linear Mixed-e�ects Model

A 2-stage approach can be performed explicitly in the analysis.

However, this is just another example of the use of summary statistics.

 is summarized by .

Summary statistics  are analyzed in the second stage.

The associated drawbacks can be avoided by combining the two stages into one
model:

Yi β̂ i

β̂ i

{Yi = Ziβi + εi
βi = Kiβ + bi

⇒ Yi = ZiKiβ + Zibi + εi

= Xiβ + Zibi + εi
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The model is given by:

Where:

Terminology:

Fixed e�ects: 
Random e�ects: 
Variance components:  and 

Yi = Xiβ
fixed effect

+ Zibi
random effect

+ εi

{ bi ∼ N(0,D) εi ∼ N(0, Σi) b1, b2, … , bN , ε1, ε2, … , εN are , independent

β
bi

D Σi
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For Gaussian data, GLMM extends the General Linear Model (GLM) by the addition of
random e�ect parameters and by allowing a more �exible speci�cation of the
covariance matrix of the random errors.

GLM: 

GLM includes t-tests, analysis of variance (ANOVA), correlation, regression, and
factor analysis, etc.

GLMM: 

Di�erence?

GLM: vector of random errors
GLMM: is no longer required to be independent and homogenous

Mixed E�ects Models

Applicable to all types of outcomes (continuous, discrete)
Can handle both time-variant and time-invariant covariates
Robust to missing data (irregularly spaced observations)

Yi = Xiβ + ϵi

Yi = Xiβ + Zibi + ϵi

ϵi
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Contains both �xed and random e�ects

Yi = Xiβ + Zibi + ϵi
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Summary

LMM extends the GLM by the addition of random e�ect parameters and by allowing a
more �exible speci�cation of the covariance matrix of the random errors

LMM can easily �tted to longitudinal data

Estimation is more di�cult in mixed models than GLM

Longitudinal models have three sources of variation

between subject variability/represented by random e�ect

Within subject variability/represented by serial correlation

Measurement error
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Source of random variation

3 stochastic components:

: between-participant variability
: measurement error

: serial correlation component

Random e�ects (variation between participants)

Characteristics of individual participants
For example, intrinsically high or low responders

Serial correlation (variation over time within participants)

Measurements taken close together in time are strongly correlated than those taken
further apart in time
On a su�ciently small scale, this kind of structure is almost inevitable

Measurement error

Yi = Xiβ + Zibi + ϵi
Yi = Xiβ + Zibi + ϵ(1)i + ϵ(2)i

bi
ϵ(1)i

ϵ(2)i
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Model Families

Marginal (population average) models

Subject speci�c models

Conditional models

Each can be

Random intercept model

Random slope model

Random higher order model
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Model families

Marginal (population average) models

Responses are marginalized over all other responses
Parameters characterize the marginal expectation

Subject speci�c models

If the aim is to study how subjects change overtime & what characteristics in�uence
such changes
Subject speci�c models di�er from marginal models by the inclusion of parameters
speci�c to the subject

Conditional models

Any response within the sequence of repeated measures is modeled conditional upon
the other outcomes
Parameters describe a feature of outcomes, given values for the other outcomes (Cox
1972) i.e. log linear models
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1. Random intercept model

Each subject has his/her own intercept: 

Interparticipant variability at baseline

Slope remains the same: 

Fixed e�ects can be added to the model

Conditional distribution:

Take  and 

⎧⎪
⎨
⎪⎩

Yij = β0 + β1tij + b0i + ϵij

b0i ∼ N(0,σ2
b
), εi ∼ N(0,σ2

ϵ )
b0i, εij are independent

β0 + b0i

β1

E(Y /b) V ar(Y /b)

E(Yij/b0i) = β0 + β1tij + b0i

V ar(Yij/b0i) = σ2
ϵ

Yij/b0i ∼ N(β0 + β1tij + b0i σ2
ϵ )
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1. Random intercept model

Marginal distribution (marginal over the random intercepts):

Take  and 

⎧⎪
⎨
⎪⎩

Yij = β0 + β1tij + b0i + ϵij

b0i ∼ N(0,σ2
b
), εi ∼ N(0,σ2

ϵ )
b0i, εij are independent

E(Yij) V ar(Yij)

E(Yij) = β0 + β1tij

V ar(Yij) = σ2
b

+ σ2
ϵ

Yij ∼ N(β0 + β1tij,σ2
b

+ σ2
ϵ )
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The random intercept model: ICC

Measurements from the same participant share a random e�ect:
Means that marginally, there is a correlation structure

Let's consider two measurements from the same participant:

 and , 

Correlation between two measurements from the same participant:

Yij Yik j ≠ k

Cov(Yij,Yik) = σ2
b

Cov(Yij,Yik) =
σ2
b

σ2
b

+ σ2
ϵ
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2. Random Slope Model

Each subject has his/her own intercept: 
Each subject has his/her own slope: 
Allows the pro�les to cross each other

Fixed e�ects can be added to the model.

This model has two random e�ects:  and 

Their covariance 

If positive: subjects higher at baseline also have a higher evolution
If negative: subjects higher at baseline have a slower evolution

⎧⎪
⎨
⎪⎩

Yij = β0 + β1tij + b0i + b1itij + ϵij

b0i, b1i ∼ N(0,D), εi ∼ N(0,σ2
ϵ )

ϵij independent of b0i, b1i

D =
⎛
⎜⎜
⎝

σ2
0 σ01

σ10 σ2
1

⎞
⎟⎟
⎠

β0 + b0i
β1 + b1i

b0i b1i

σ10 = σ01 :
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2. Random Slope Model

If the covariance  is not restricted:
It is called unstructured.

Conditional distribution:

Marginal distribution:

Note: marginal variance is a function of time

σ10 = σ01

E(Yij|b0i, b1i) = β0 + β1tij + b0i + b1itij
V ar(Yij|b0i, b1i) = σ2

ϵ

E(Yij) = β0 + β1tij

V ar(Yij) = σ2
1tij + 2σ01tij + σ2

0 + σ2
ϵ
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The Random Slope Model: ICC

Let's consider two measurements from the same subject:

 and , 

The ICC is now a function of time:

Yij Yik j ≠ k

Cov(Yij,Yik) = σ2
1tijtik + σ01(tij + tik) + σ2

0

Corr(Yij,Yik) =
σ2

1tijtik + σ01(tij + tik) + σ2
0

√σ2
1tij + 2σ01tij + σ2

0 + σ2
ϵ√σ2

1tik + 2σ01tik + σ2
0 + σ2

ϵ
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Marginal models Vs Subject speci�c Models

1. The General Linear Mixed-e�ects model:

;  independent

It can be written as:

Yi = Xiβ + Zibi + ϵi

bi ∼ N(0,D), ϵi ∼ N(0, Σi)

b1, b2, … , bN , ϵ1, ϵ2, … , ϵN

Yi/bi ∼ N(Xiβ + Zibi, Σi)

bi ∼ N(0,D)
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Marginal models Vs Subject speci�c Models

It is also called a hierarchical model:

A model for  given 
A model for 

Marginally, we have that  distributed as:

Hence, very speci�c assumptions are made about the dependence of mean and
covariance on the covariates  and :

Implied mean: 

Implied covariance: 

Note that the hierarchical model implies the marginal, NOT vice versa.

Yi bi
bi

Yi

Yi ∼ N(Xiβ,ZiDZ ′
i + Σi)

Xi Zi

Xiβ

Vi = ZiDZ ′
i + Σi
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Marginal models vs subject speci�c models ... (3)
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Marginal model: estimation and inferenceMarginal model: estimation and inference

Estimation of the marginal modelEstimation of the marginal model

IntroductionIntroduction
Maximum likelihood estimation (MLE)Maximum likelihood estimation (MLE)
Restricted maximum likelihood estimation (RMLE)Restricted maximum likelihood estimation (RMLE)

General guidelines for model buildingGeneral guidelines for model building

Estimation and tests for random e�ectsEstimation and tests for random e�ects

Practical: Fitting LMM in RPractical: Fitting LMM in R
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Recap: The General Linear Mixed e�ects Model (GLMM)

GLMM:

where

 independent

Terminology:

Fixed e�ects: 

Random e�ects: 

Variance components:  and 

Yi = Xiβ + Zibi + ϵi

bi ∼ N(0,D)
ϵi ∼ N(0, Σi)
b1, b2, . . . , bN , ϵ1, ϵ2, . . . , ϵN

β

bi

D Σi
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Estimation of the marginal model

Recall: GLMM

where , 

 independent

The implied marginal model equals: 

Let:
Residual error covariance matrix: 

The marginal covariance matrix: 

Inferences based on the marginal model do not explicitly assume the presence of
random e�ects representing the natural heterogeneity between subjects

Yi = Xiβ + Zibi + ϵi

bi ∼ N(0,D) ϵi ∼ N(0, Σi)

b1, b2, . . . , bN , ϵ1, ϵ2, . . . , ϵN

Yi ∼ N(Xiβ,ZiDZ ′
i + Σi)

Σi = σ2
i Ini

Vi = ZiDZ ′
i + Σi
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Notation:

: vector of �xed e�ects (as before)
: Vector of all variance components in  and 

 vector of all parameters in marginal model

Marginal likelihood function is given by:

If  were known, the maximum likelihood estimate (MLE) of  would be:

where .

β
α D Σi

θ = (β ′,α′)

LLM(θ) =
N

∏
i=1

{(2π)−ni/2|Vi(α)|−1/2 exp(− (Yi − Xβ)TVi(α)−1(Yi − Xβ))}
1
2

α β

β̂(α) = (
N

∑
i=1

(XT
i WiXi)−1

N

∑
i=1

XT
i Wiyi)

Wi = V −1
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In most cases,  were unknown, and needs to be replaced by an estimate 

Two frequently used estimation methods for 

Maximum likelihood (ML)
Restricted maximum likelihood (REML)

α α̂

α
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Maximum Likelihood Estimation (MLE)

ML estimation of :

Does not take into account that  estimated from data.

Does not account for degrees of freedom lost.

Generally results in biased estimation of .

Vi

β

Vi
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Restricted Maximum Likelihood Estimation (REML)

What’s the di�erence between ML and REML?

ML estimates of variances are known to be biased in small samples.
The simplest case: Sample variance

To obtain an unbiased estimate, we need to divide by  because we estimate
the mean

The REML estimation is a generalization of this idea.

It provides unbiased estimates of the parameters in the covariance matrix  in small
samples.

V ar(x) =
n

∑
i=1

(xi − x̄)21
n − 1

n − 1

x̄ =
n

∑
i=1

xi
1
n

Vi
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Features of REML estimation:

It corrects for the downward bias in the ML parameters.

It handles strong correlations among the responses more e�ectively.

Available in all software that �t marginal and mixed e�ects models.

The default estimation method in most software (R, SAS).

It works is by applying a transformation in the longitudinal outcome 𝑌 based on the
chosen structure of the design matrix 𝑋(i.e., which predictors you have included in the
model).

Models with di�erent mean structures not comparable.

Since di�erent observations involved.
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Features of REML estimation

It corrects for the downward bias in the ML parameters

It handles strong correlations among the responses more e�ectively

Available in all software that �t marginal and mixed e�ects models

The default estimation method in most software (R, SAS)

It works by applying a transformation in the longitudinal outcome  based on the
chosen structure of the design matrix  (i.e., which predictors you have included in
the model)

Models with di�erent mean structures not comparable.

since di�erent observations involved.

Y
X
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ML versus REML

Both are based on the likelihood principle, which has the properties of consistency,
asymptotic normality, and e�ciency.

The di�erences between ML and REML estimation increase as the number of �xed
e�ects in the model increases.

Di�erence between ML and REML is less marked if 

We cannot compare the likelihoods of models �tted with REML and have di�erent 
part!

n > p

Xβ
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Components of the linear mixed E�ects model (LMM)

The implied marginal model equals: 

The mean structure: 

The covariance structure:

When we estimate the covariance matrix without making any particular
assumption about the covariance structure, we say that we are using an
unrestricted or unstructured covariance matrix (UN).

As we shall see later, it is sometimes advantageous to model the covariance
structure more parsimoniously.

Yi = Xiβ + Zibi + ϵi

Yi ∼ N(Xiβ,ZiDZ ′
i + Σi)

Xiβ
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Fitting marginal models in R

R> The following code �ts a marginal model for the growth data with a compound
symmetry correlation structure:

gls.Symm <- gls(distance ~ Sex * I(age - 11), data = growth, 
                correlation = corSymm(form = ~1|Subject),
                weights = varIdent(form = ~1|age))

The Restricted Maximum Likelihood (REML) method is commonly used as the default
estimation approach for the Generalized Least Squares (GLS).

113 / 220



Covariance matrix ... (1)

Variances, covariances and correlations

variance measures how far a set of numbers is spread out (always positive)

covariance is a measure of how much two random variables change together (positive
or negative)

correlation a measure of the linear correlation (dependence) between two variables
(between −1 and 1; 0 no correlation)

We need an appropriate choice for the marginal covariance matrix: 

in order to appropriately describe the correlations between the repeated
measurements

Mostly used appropriate for the research question under study– independent,
compound symmetry or exchangeable, autoregressive, unstructured.

Vi = ZiDZ ′
i + Σi
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Covariance matrix ... (2)

Independent covariance structure
assumes that the measurements are uncorrelated. i.e., no linear relationship
between them.

Compound symmetry covariance structure
assumes that all correlations between measurements are equal.

Autoregressive covariance structure
assumes that correlations decrease as the time interval between measurements
increases.
As the time interval increases, the correlation decreases exponentially.

Unstructured covariance structure
makes no assumptions about the correlations between measurements.
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Example code

library(nlme)
# Independent covariance structure
fit_i <- lme(response ~ time, random = ~ 1 | subject, 
             correlation = corSymm(form = ~ 1))

# Compound symmetry covariance structure
fit_c <- lme(response ~ time, random = ~ 1 | subject, 
             correlation = corCompSymm(form = ~ 1))

# Autoregressive covariance structure
fit_ar <- lme(response ~ time, random = ~ 1 | subject, 
              correlation = corAR1(form = ~ time))

# Unstructured covariance structure
fit_un <- lme(response ~ time, random = ~ 1 | subject, 
              correlation = corSymm(form = ~ 1))
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Model building

We have seen that marginal models consist of two parts:

Mean part  that describes how covariates we have put in the model explain
the average of the repeated measurements.
Covariance part  assumed covariance structure between the repeated
measurements.

In the majority of the cases, scienti�c interest focuses on the mean part.

However, to obtain valid and e�cient inferences for the mean part, the covariance
part needs to be adequately speci�ed.

Xβ :

Vi :
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General guidelines for model building

Exploratory data analysis Descriptive statistics, individual group pro�les, plots

Begin with simple models and build towards more complex mean structure

Put all the covariates of interest in the mean part, considering possible nonlinear
and interaction terms - do NOT remove the ones that are not signi�cant

Then select covariance structure covariance matrix  that adequately describes the
correlations in the repeated measurements

Finally, reduce the mean structure

return to the mean part and exclude non signi�cant covariates
start by testing the interaction terms, and then the nonlinear terms

Model diagnostics

Vi
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Fitting linear mixed models in R ... further details

There are two packages in R for �tting multilevel models

The older and more comprehensive package is nlme, an acronym for nonlinear mixed
e�ects models

Its limitation is that it only �ts normal-based models and was not designed to �t
mixed models to non-hierarchical data

The newer package is lme4

It can handle generalized linear mixed e�ect regression models such as logistic and
Poisson regression

It currently lacks the nonlinear features of nlme

Since we are going to focus on examples based on normal theory, our focus will be on
the nlme package
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Model: Jimma infant data

: weight (Kg) of the  infant at the  visit.

: Age of the  infant at the  visit.

: Sex of the  infant (Female=0, Male=1)

: random intercept; : random slope

Wij = β0 + b0i + β1Si + (β2 + b1i)Aij + β3Aij
2 + β4SiAij + β5Aij

2Si + εij

Wij ith jth

Aij ith jth

Si ith

b0i b1i
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Basic components from R

The function lme under the library nlme in R �ts:

Linear mixed-e�ects model
Multilevel linear mixed e�ects model

It uses maximum likelihood or restricted maximum likelihood

The command lme in R is as follows:

lme(fixed, data, random, correlation, weights, subset, 
    method, na.action, control, contrasts = NULL, keep.data = TRUE)

fixed is an argument to de�ne the �xed e�ects portion.
random is an argument to de�ne the random e�ects portion.
data is an optional data frame containing the variables named correlation
describing the within-group correlation structure.
method is an argument to lme that changes the estimation method.
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REML: the model is �t by maximizing the restricted log-likelihood.
If ML, the log-likelihood is maximized. The Default is REML.

Fixed and Random Parts:

The �xed part is fixed = distance ∼ Sex + Sex ∗ age.
The random part is random =∼ 1|Subject.

If the random part is speci�ed as above, it means we will �t a model with a random
intercept.

Here, the response is speci�ed only on the �xed part.

In the random part, the model statement begins with just a ∼.

If the random formula is omitted, its default value is taken as the right-hand side of
the �xed formula.

The vertical bar separates the model speci�cation from the structural speci�cation.
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Model:

: Orthodontic distance of the h child at the j^{th}$ visit.

: Age of the  child at the  visit, 

: Sex of the  child (boys = 1, girls = 2)
: Random intercept
: Random slope

Dij = β0 + β1Si + β2A0ij + β4SiA0ij + b0i + b1iA0ij + εij

Dij ith

Aij ith jth A0ij = Aij − 8
Si ith

b0i
b1i
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Growth Data

We want to �t a random intercept model on growth data, and the following code can be
used:

library(nlme)
growth$age <- as.numeric(growth$age)
growth.fit1 <- lme(fixed = measure ~ Sex + Sex * age,
                   data = growth, random = ~ 1 | ind)

Code Explanation:

Fixed e�ect: fixed = distance ~ Sex + Sex * age
Name for the data: data = growth
Random intercept: random = 1 | ind

For the growth.fit1 object, print(growth.fit1) gives...
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print(growth.fit1)

## Linear mixed-effects model fit by REML
##   Data: growth 
##   Log-restricted-likelihood: -201.6885
##   Fixed: measure ~ Sex + Sex * age 
##   (Intercept)     Sexfemale           age Sexfemale:age 
##    21.0213732    -0.8683341     1.5738504    -0.5953673 
## 
## Random effects:
##  Formula: ~1 | ind
##         (Intercept) Residual
## StdDev:    1.836499 1.440418
## 
## Number of Observations: 99
## Number of Groups: 27
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Main lme Methods:

ACF: Empirical autocorrelation function of within-group residuals
anova: Likelihood ratio or conditional tests
augPred: Predictions augmented with observed values
coef: Estimated coe�cients for di�erent levels of grouping
fitted: Fitted values for di�erent levels of grouping
fixef: Fixed-e�ects estimates
intervals: Con�dence intervals on model parameters
logLik: Log-likelihood at convergence
pairs: Scatter-plot matrix of coe�cients or random e�ects
plot: Diagnostic Trellis plots
predict: Predictions for di�erent levels of grouping
print: Brief information about the �t
qqnorm: Normal probability plots
ranef: Random-e�ects estimates
resid: Residuals for di�erent levels of grouping
summary: More detailed information about the �t
update: Update the lme �t
Variogram: Semivariogram of within-group residuals
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The command coef(growth.fit1) in R produced;

coef(growth.fit1)

##    (Intercept)  Sexfemale     age Sexfemale:age
## 1     19.96031 -0.8683341 1.57385    -0.5953673
## 2     21.36871 -0.8683341 1.57385    -0.5953673
## 3     21.77183 -0.8683341 1.57385    -0.5953673
## 4     22.99378 -0.8683341 1.57385    -0.5953673
## 5     21.04369 -0.8683341 1.57385    -0.5953673
## 6     19.69724 -0.8683341 1.57385    -0.5953673
## 7     21.36871 -0.8683341 1.57385    -0.5953673
## 8     21.69372 -0.8683341 1.57385    -0.5953673
## 9     19.69724 -0.8683341 1.57385    -0.5953673
## 10    17.34603 -0.8683341 1.57385    -0.5953673
## 11    24.29384 -0.8683341 1.57385    -0.5953673
## 12    23.44295 -0.8683341 1.57385    -0.5953673
## 13    19.73377 -0.8683341 1.57385    -0.5953673
## 14    20.40948 -0.8683341 1.57385    -0.5953673
## 15    22.46791 -0.8683341 1.57385    -0.5953673
## 16    19.04224 -0.8683341 1.57385    -0.5953673
## 17    22.25123 -0.8683341 1.57385    -0.5953673
## 18    19.97613 -0.8683341 1.57385    -0.5953673
## 19    20.08446 -0.8683341 1.57385    -0.5953673
## 20    21.16785 -0.8683341 1.57385    -0.5953673
## 21    24.95969 -0.8683341 1.57385    -0.5953673
## 22    19.86779 -0.8683341 1.57385    -0.5953673
## 23    20.42530 -0.8683341 1.57385    -0.5953673
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Command �xef (Ortho.�t1), the following output is produced

fixef(growth.fit1)

##   (Intercept)     Sexfemale           age Sexfemale:age 
##    21.0213732    -0.8683341     1.5738504    -0.5953673

The parameters are average
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Producing Maximum Likelihood Estimates Using lme

In all of the above outputs, we produced the Restricted Maximum

Likelihood Estimates as REML is the default method in the lme.

The argument method=ML requests that estimates be obtained using full maximum
likelihood.

growth.fit2 <-lme(fixed = measure ~ Sex+Sex*age, method= "ML",
data = growth, random = ~ 1|ind)

The output that follows is based on the maximum likelihood estimation.

The intervals growth.�t2 command in R will produce the following con�dence interval
for the parameters of our model.
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intervals(growth.fit2)

## Approximate 95% confidence intervals
## 
##  Fixed effects:
##                   lower       est.       upper
## (Intercept)   19.768981 21.0233697 22.27775872
## Sexfemale     -2.900448 -0.8676887  1.16507014
## age            1.253491  1.5734511  1.89341086
## Sexfemale:age -1.097287 -0.5954963 -0.09370524
## 
##  Random Effects:
##   Level: ind 
##                    lower     est.    upper
## sd((Intercept)) 1.281518 1.759342 2.415326
## 
##  Within-group standard error:
##    lower     est.    upper 
## 1.206171 1.420339 1.672535

130 / 220



The summary(growth.�t2) command in R will produce the following output for the
parameters of our model

summary(growth.fit2)

## Linear mixed-effects model fit by maximum likelihood
##   Data: growth 
##        AIC      BIC    logLik
##   413.3128 428.8835 -200.6564
## 
## Random effects:
##  Formula: ~1 | ind
##         (Intercept) Residual
## StdDev:    1.759342 1.420339
## 
## Fixed effects:  measure ~ Sex + Sex * age 
##                   Value Std.Error DF  t-value p-value
## (Intercept)   21.023370 0.6420483 70 32.74422  0.0000
## Sexfemale     -0.867689 1.0075619 25 -0.86118  0.3973
## age            1.573451 0.1637687 70  9.60777  0.0000
## Sexfemale:age -0.595496 0.2568375 70 -2.31857  0.0233
##  Correlation: 
##               (Intr) Sexfml age   
## Sexfemale     -0.637              
## age           -0.651  0.415       
## Sexfemale:age  0.415 -0.651 -0.638
## 
## Standardized Within-Group Residuals:
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The maximum likelihood is the estimation method that was used.

The AIC and log likelihood can be used to make comparisons between models with
di�erent �xed e�ects (or random e�ects).

The next estimates for the random e�ects part of the model.

In the line where the numerical estimates appear, the label is StdDev, indicating that
standard deviations are displayed.

The estimates displayed are the standard deviations of between variability
 and the standard deviations of within variability .

In the Fixed E�ects sections, we have the reported value of the intercept, its estimated
standard error, and Wald test for whether its value is signi�cantly di�erent from zero
or not.

(σb = 1.74) (σw = 1.369)
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Random Slope Model:

Random intercept: random = 1|ind
Random intercept and slope: random =∼ age|subject

growth.fit2 <- lme(fixed = measure ~ Sex + Sex * age,
                   data = growth, random = ~ age | ind)

VarCorr(growth.�t2), variance components can be extracted from the model

VarCorr(growth.fit2)

## ind = pdLogChol(age) 
##             Variance  StdDev    Corr  
## (Intercept) 4.3613844 2.0883928 (Intr)
## age         0.1766018 0.4202402 -0.457
## Residual    1.7665539 1.3291177
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Inference for the Marginal Model

Having �tted a marginal model using maximum likelihood, we can use standard
inferential tools for performing hypothesis testing:

Wald test
t-test / F-test
Score test
Likelihood ratio test (LRT)
Robust Inference

Following the model building strategy described above, we will:

First, describe how we can choose the appropriate covariance matrix, and
Then focus on hypothesis testing for the mean part of the model.
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Hypothesis Testing for :

Assuming the same mean structure, we can �t a series of models and choose the one
that best describes the covariances.

In general, we distinguish between two cases:

Comparing two models with nested covariance matrices
Comparing two models with non-nested covariance matrices

Model A is nested in Model B when Model A is a special case of Model B – i.e., by
setting some of the parameters of Model B at some speci�c value, we obtain Model A.

Vi
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For nested models, the preferable test for selecting  is the likelihood ratio test
(LRT):

The likelihood ratio test (LRT) is calculated as follows:

Where:

 is the value of the log-likelihood function under the null hypothesis, i.e., the

special case model.
 is the value of the log-likelihood function under the alternative hypothesis, i.e.,

the general model.
 denotes the number of parameters being tested.

Note: Provided that the mean structure in the two models is the same, we can either
compare the REML or ML likelihoods of the models (preferably REML).

Vi

LRT = −2 (ℓ(θ0) − ℓ(θa))

ℓ(θ0)

ℓ(θa)

p
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We can rewrite the two hypotheses as:

Inference for the Marginal Model:

When we have non-nested models, we cannot use standard tests anymore.

When we compare two non-nested models, we choose the model that has the lowest
AIC/BIC value.

The unstructured covariance matrix is the most general matrix we can assume:

All other covariance matrices are a special case of the unstructured matrix.
But realistically, it can only be �tted when we have balanced data and relatively
few time points.

LRT = −2 (ℓ(θ0) − ℓ(θa)) ∼ χ2
p

H0 : {σ12 = σ22 = σ32 = σ42 = σ2

σ12 = σ13, = ⋯ = σ34 = ~σ

H0 : At least one variance or covariance is not equal to others.
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Information Criteria:

LR tests can only be used to compare nested models.

How to compare non-nested models?

The general idea behind the LR test for comparing model A to a more extensive
model B is to select model A if the increase in likelihood under model B is small
compared to the increase in complexity.

A similar argument can be used to compare non-nested models A and B.

One then selects the model with the largest (log-)likelihood provided it is not (too)
complex.

Criterion: Akaike (AIC), Schwarz (SBC).
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AIC:

For each model compute AIC = .

 is the number of parameters in the model.

 is the likelihood.

 is a constant (often 2).  can be seen as a penalty for additional parameters. 
between 2 and 6. The recommendation is to use a larger  with a small sample.

Has theoretical basis in the prediction of future data.

In practice, it sometimes over�ts and chooses models that are sometimes too large.

−2 log(L) + kp

p

L

k k k
k
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Notes on IC:

Information criteria are not formal testing procedures!

The AIC and BIC do not always select the same model – when they disagree:

AIC typically selects the more elaborate model, whereas BIC selects the more
parsimonious model.

For the comparison of models with di�erent mean structures, IC should be based on
ML rather than REML, as otherwise the likelihood values would be based on di�erent
sets of error contrasts, and therefore would no longer be comparable.
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Hypothesis Testing for Regression Coe�cients:

Hypothesis testing on  We assume that a suitable choice for the covariance matrix
has been made.

In the majority of the cases, we compare nested models, and hence standard tests
can be used.

We distinguish between two cases:

Tests for individual coe�cients.
Tests for groups of coe�cients.

β :
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Tests for Individual Coe�cients:

Tests for individual coe�cients are based on the Wald-type statistic but assume the t-
distribution for calculating p-values.

The hypothesis is:

We use the t test statistic:

df speci�ed according to the number of subjects and the number of repeated
measurements per subject.

H0 : β = 0 Ha : β ≠ 0

∼ tdf
^s. e.(β)

β̂
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Tests for Group Coe�cients:

Tests for group coe�cients are based on the F-test.

The hypothesis is:

where  is the contrasts matrix.

The numerator df are always equal to the rank of the contrast matrix .

Denominator df need to be estimated from the data using methods such as the
Containment method, Satterthwaite approximation, Kenward and Roger
approximation.

There is no single method that provides satisfactory results in all settings - it matters
more what you do in small samples.

H0 : Lβ = 0 vs Ha : Lβ ≠ 0

L

L
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Notes on Hypothesis Testing for Regression Coe�cients:

Hypothesis testing for the regression coe�cients :

The likelihood ratio test, and the classical univariate and multivariate Wald tests
(using the  distribution instead of the t or F distributions), are 'liberal'.

They give smaller p-values than they should give, especially in small samples.

The LRT for comparing models with di�erent  parts is only valid when the models
have been �tted using maximum likelihood and not REML.

For Studies with Small Samples:

P-values of Wald test may be too small.
Con�dence intervals may be too narrow.
t and F-tests may be used to remedy this.
Di�culty is with determining the df.

β

χ2

β
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Inference for the Variance Components:

Inference for the mean structure is usually of primary interest.

However, inferences for the covariance structure are of interest as well:

Interpretation of the random variation in the data.
Over-parameterized covariance structures lead to ine�cient inferences for the
mean.
Too restrictive models invalidate inferences for the mean structure.

The reported p-values often do not test meaningful hypotheses

The reported p-values are often wrong.

The sample size requirements for these tests are excessive & often not met
(approximately 400 or more subjects).
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Likelihood Ratio Test

After a candidate model is selected, a LRT can be computed by comparing the
candidate model with the reduced model.

The mean structure of the model remains the same across both models, but the
number of random e�ects is reduced by one in the reduced model.

Note: as long as models are compared with the same mean structure, a valid LR test
can be obtained under REML as well.

Note: if  is a boundary value, the classical  approximation may not be valid.

For some very speci�c null-hypotheses on the boundary, the correct asymptotic null-
distribution has been derived.

Example: for the infant survival data, testing whether the variance components
associated with the random time e�ect are equal to zero is equivalent to testing

H0 χ2

H0 : d12 = d22 = 0
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Case 1: No Random E�ects vs One Random E�ect

Hypothesis of Interest:

 vs  for some scalar 

Asymptotic null distribution equals , the mixture of  and  with

equal weight 0.5.

Case 2: One vs Two Random E�ects

Hypothesis of Interest:

for , versus  that  is a 2 by 2 positive semi de�nite matrix.

Asymptotic null distribution: , the mixture of  and  with equal

weight 0.5.

H0 : D = 0 Ha : D = d11 d11

−2 lnλN → χ2
0:1 χ2

0 χ2
1

D = ( d11 0
0 0

) ,

d11 > 0 Ha D

−2 lnλN → χ2
1:12 χ2

1 χ2
2
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Day 3Day 3

Models for Non-Gaussian LongitudinalModels for Non-Gaussian Longitudinal
DataData

Generalized Estimating Equations (GEE)Generalized Estimating Equations (GEE)
Generalized Linear Mixed Model (GLMM)Generalized Linear Mixed Model (GLMM)
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Recap: Marginal (population average) models:

Responses are marginalized over all other responses.

Parameters characterize the marginal expectation.

Inferences based on the marginal model do not explicitly assume the presence of
random e�ects representing the natural heterogeneity between subjects.

The implied marginal model equals:

Subject-speci�c models:

If the aim is to study how subjects change overtime and what characteristics in�uence
such changes.

Subject-speci�c models di�er from marginal models by the inclusion of parameters
speci�c to the subject.

Yi ∼ N (Xiβ,ZiDZ′
i + Σi).

Yi|bi ∼ N (Xiβ + Zibi, Σi),
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Recap: Generalized linear models

LMM have the assumption that the conditional responses are normally distributed.

Normality assumption may not always be reasonable, i.e., non-Gaussian responses.

Di�erent methodology should be used when responses are discrete.

Suppose we have a dichotomous outcome, Y, measured cross-sectionally.

We are interested in making statistical inferences for this outcome, e.g.:

Is there any di�erence between placebo and treatment corrected for the age and
sex of the patients?
Which factors best predict the outcome?
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Generalized linear models

Suppose we have a dichotomous outcome, Y, measured cross-sectionally.

Odds of success = 

A unit change in  from  to  (while all other covariates are held �xed)
corresponds to .

Example Toenail Data

Toenail Dermatophyte Onychomycosis: Common toenail infection, di�cult to treat,
a�ecting more than 2% of the population.

Classical treatments with antifungal compounds need to be administered until the
whole nail has grown out healthy.

New compounds have been developed which reduce treatment to 3 months.

Randomized, double-blind, parallel group, multicenter study.

log( ) = log(πi) = β0 + β1xi1 + β2xi2 + ⋯ + βpxip
odds of success

1 − odds of success

πi/(1 − πi) = exp(β0 + β1xi1 + β2xi2 + ⋯ + βpxip)

X1 x x + 1
exp(β1)
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Toenail Data

Research question: Severity relative to treatment of TDO, coded as 0 (not severe)
or 1 (severe).

The question of interest was whether the percentage of severe infection decreased
over time, and whether that evolution was di�erent for the two treatment groups:

2 × 189 patients randomized, 36 centers.

48 weeks of total follow-up (12 months).

12 weeks of treatment (3 months).

Measurements at months 0, 1, 2, 3, 6, 9, 12.
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Toenail Data

library(readr)
toenail <- read_csv("Data/Toenail.csv")

library(gtsummary)
toenail %>% select(time, treatn) %>% 
  tbl_summary(by=treatn)

Characteristic 1">0, N = 9371 1">1, N = 9701

time

    0 146 (16%) 148 (15%)

    1 141 (15%) 147 (15%)

    2 138 (15%) 145 (15%)

    3 132 (14%) 140 (14%)

    6 130 (14%) 133 (14%)

    9 117 (12%) 126 (13%)

    12 133 (14%) 131 (14%)
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Recap: Generalized linear models

fit <- glm(formula = y ~ treatn * time, family = binomial, data = toenail)
summary(fit)$coefficients

##                Estimate Std. Error    z value     Pr(>|z|)
## (Intercept) -0.55705808 0.10903934 -5.1087806 3.242445e-07
## treatn       0.02357666 0.15648006  0.1506688 8.802370e-01
## time        -0.17692959 0.02455777 -7.2046268 5.820304e-13
## treatn:time -0.07797568 0.03943628 -1.9772574 4.801254e-02

 is the interaction e�ect.
Borderline signi�cance (p = 0.048) which means that trends might be di�erent in the
two treatment groups.
This analysis is wrong since we have not taken into account the multiple responses
per subject.
We have considered 1907 independent observations (residual degrees of freedom +
1).

length(toenail$y)

## [1] 1907

β3 = −0.078
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Generalized Estimating Equations (GEE)

We return our focus on repeated measurements data, namely, repeated categorical
data

we need to account for the correlations

Reminder: In the marginal models for continuous multivariate data we took account of
the correlations by incorporating a correlation matrix in the error terms

ML and REML

Challenges for Non-Gaussian Data

For non-Gaussian data it is not straightforward to do that because there are no clear
multivariate analogues of the univariate distributions

we will do something similar, not in the error terms but in the score equations

Popular alternative approaches, like GEEs, Alternating logistic regression (ALR), and
Pseudo-likelihood (PL) have been formulated.
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GEE .....(2)

GEE introduced by Liang and Zeger (Biometrika, 1986) is a best way to model
longitudinal data in the marginal modeling framework for categorical responses.

The parameters of GLMs are estimated using the maximum likelihood approach.

Key idea: Finding the top of the log-likelihood mountain is equivalent to �nding the
parameter values for which the slope of the mountain is �at (i.e., zero).
The slope of the log-likelihood mountain is given by the score vector:

Where:

 represents the score vector.

 is the mean of , and for dichotomous data .
 is a diagonal matrix with the variance of , e.g., for dichotomous data

.

Sβ = ∑
i

V −1
i (Yi − μi)

∂μi

∂β

Sβ

μi Yi μi = πi
Vi Yi
Vi−1 = diag(πi(1 − πi))
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The idea of Liang and Zeger was to replace the diagonal matrix  with a full covariance
matrix:

Where:

 is a diagonal matrix with the standard deviations .

 represents a 'working' assumption for the pairwise correlations.

This approach follows the same form as the full likelihood procedure but restricts the
speci�cation to the �rst moment only.

Vi

Vi = A
−1/2
i Ri(α)A−1/2

i

Ai √var(Yi)

Ri(α)
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GEE....(3)

If the assumed mean structure, , is correctly speci�ed, then

where  is called the Sandwich or Robust estimator.

 and  are often referred to as the "bread" and "meat" of the Sandwich estimator.

GEE provides consistent regression coe�cient estimates even if the correlation
structure is miss-speci�ed.

A poor choice of working correlation matrix can a�ect the e�ciency of the estimators
of .

μi

β̂ ∼ N (β, var(β̂))

var(β̂) = V −1
0 V1V

−1
0

V0 = ∑i V −1
i

∂μi

∂β
∂μi

∂β

V1 = ∑i var(Y )V −1
1

∂μi

∂β
∂μi

∂β

V0 V1

β
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Sandwich/Robust vs Naive/Purely Model-Based Standard Errors

Software often also reports the Naive/model-based standard errors.
These standard errors assume that the working correlation matrix is correctly
speci�ed.
The Sandwich/Empirically Corrected/Robust standard errors correct for a possible
misspeci�cation of the correlation structure, although at the expense of power.

A correct guess ⟹ likelihood variance.

GEE is not a likelihood-based approach (i.e., a model)

It is an estimation method
No assumptions for the joint distribution of repeated measurements ⟹ Semi-
parametric approach
The method relies solely on assumptions about the mean response

Pairwise correlations ⇒ we make a "working" assumption that possibly depends
on parameters to be estimated
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The mean and the correlations are separately de�ned!

This is in contrast to the GLMMs we will see in the next class.

Fitting algorithm:

Fit a Generalized linear model ⟹ choose a working correlation matrix ⟹
update , the covariance, and the correlation matrix.

Interest is primarily in the s, the covariance structure is considered as “nuisance”

– Assumptions for the correlation are not supposed to be correct.

This has implications for Hypothesis testing:

Likelihood ratio test or score test not applicable.

Why? (semi-parametric approach) ⇒ The Wald test can be used.

Care needed with incomplete data.

β̂

β
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GEE in R

In R there are two main packages for GEE analysis, namely gee and geepack.

The main function to �t GEEs is geeglm() – this has similar syntax as the glm() function
of base R that �ts GLMs.

The major di�erence between gee and geepack is that geepack contains an ANOVA
method that allows us to compare models and perform Wald tests.

Using Toenail data: Variables in the data:

obs: observation number
treat: treatment group (0: Itraconazole (group B); 1: Lamisil (group A))
id: subject identi�cation number
time: time at which the observation is taken (months)
response: the response measured (1: severe infection; 0: no severe infection)

Research question: Does treatment have an e�ect in curing the infection or not?
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A function that �ts GEE to deal with correlation structures arising from repeated measures
on individuals, or from clustering as in family data is:

gee(formula, family, data, corStructure = "ar1", clusterID, startCoeff, 
    maxit = 20, checks = TRUE, display = FALSE, datasources)

formula: a string character which describes the model to be �tted.

family: description of the error distribution: 'binomial', 'gaussian', 'Gamma', or
'poisson'.

data: the name of the data frame that holds the variables.

corStructure: the correlation structure: 'ar1', 'exchangeable', 'independence', '�xed',
or 'unstructured'.

clusterID: the name of the column that holds the cluster IDs.

startCoeff: a numeric vector, the starting values for the beta coe�cients.

maxit: an integer, the maximum number of iterations to use for convergence.
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To �t GEE in R, you need the following packages �rst: geepack, wgeesel, MuMIn

library(geepack)
library(broom)
# Fit the GEE models
fit1 <- geeglm(y ~ treatn + time + treatn*time, id = idnum, data = toenail,
               family = binomial(link = "logit"), corstr = "exchangeable", scale.fix = T
fit2 <- update(fit1, corstr = "ar1")
fit3 <- update(fit2, corstr = "unstructured")

# Obtain summary results using broom
fit1_summary <- tidy(fit1)
fit2_summary <- tidy(fit2)
fit3_summary <- tidy(fit3)

# Print or manipulate the customized summaries as needed
print(fit1_summary)

## # A tibble: 4 × 5
##   term        estimate std.error statistic      p.value
##   <chr>          <dbl>     <dbl>     <dbl>        <dbl>
## 1 (Intercept) -0.587      0.174   11.4     0.000731    
## 2 treatn       0.00840    0.262    0.00103 0.974       
## 3 time        -0.177      0.0312  32.2     0.0000000136
## 4 treatn:time -0.0871     0.0570   2.34    0.126
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print(fit2_summary)

## # A tibble: 4 × 5
##   term        estimate std.error statistic     p.value
##   <chr>          <dbl>     <dbl>     <dbl>       <dbl>
## 1 (Intercept)   -0.644    0.170     14.4   0.000151   
## 2 treatn         0.115    0.250      0.212 0.645      
## 3 time          -0.143    0.0285    25.2   0.000000518
## 4 treatn:time   -0.116    0.0550     4.46  0.0346

print(fit3_summary)

## # A tibble: 4 × 5
##   term        estimate std.error statistic    p.value
##   <chr>          <dbl>     <dbl>     <dbl>      <dbl>
## 1 (Intercept)  -0.800     0.170     22.1   0.00000255
## 2 treatn        0.0980    0.259      0.143 0.705     
## 3 time         -0.122     0.0268    20.9   0.00000486
## 4 treatn:time  -0.135     0.0537     6.31  0.0120

broom:::confint.geeglm(fit1)

##                    lwr         upr
## (Intercept) -0.9269824 -0.24621415
## treatn      -0.5050685  0.52187849
## time        -0.2383974 -0.11606084
## treatn:time -0.1988485  0.02456112
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Choosing the best model

QIC = quasi-likelihood under the independence model criterion

GEE does not use maximum likelihood estimation like GLMM

QIC can help select working correlation matrix in GEE

MuMIn package calculates this statistic

#library(MuMIn)
QIC(fit1, fit2, fit3)

##           QIC     QICu Quasi Lik      CIC params     QICC
## fit1 1834.248 1820.574 -906.2870 10.83699      4 1834.456
## fit2 1833.913 1821.771 -906.8853 10.07134      4 1834.122
## fit3 1842.298 1829.939 -910.9694 10.17942      4 1847.148
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Generalized Linear Mixed Models (GLMMs)

GLMMs = GLMs (Logistic, Poisson, etc) with random e�ects.

The intuitive idea behind GLMMs is the same as in LMMs, i.e.,

The correlation between the repeated categorical measurements is induced by
unobserved random e�ects.

The categorical longitudinal measurements of a subject are correlated because all
of them share the same unobserved random e�ect (conditional independence
assumption).

The generic mixed model for  is a Mixed-E�ects Logistic Regression and has the

form:

Random e�ects account for between-subject variability.

yij

log( ) = Xiβ + Zibi, bi ∼ N (0,D)
πi

1 − πi
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Three-part speci�cation for GLMMs

1. Conditional on the random e�ects , the responses  are independent and have a

Bernoulli distribution with mean  and variance

2. The conditional mean of  is given as 

3. The random e�ects .

The mean and correlation structures are simultaneously de�ned using random
e�ects.

This has direct and important implications with respect to the interpretation of the
parameters!

bi yij
E(yij/bi) = πij

Var(yij/bi) = πij(1 − πij)

yij log( ) = xTi β + zTi bi
πij

1−πij

∼ N(0,D
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Estimation of GLMMs

The estimation of GLMMs is based on the same principles as in marginal and mixed
models for continuous data.

i.e., we have a full speci�cation of the distribution of the data (contrary to GEE),
and hence we can use maximum likelihood.

No REML.

Nevertheless, there is an important complication in GLMMs.

The �tting of GLMMs is a computationally challenging task!
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Log-likelihood expression for GLMMs

What is the problem?
The log-likelihood expression for GLMMs has the same form as in LMMs:

where  are the parameters of the model.
In linear mixed e�ects models, both terms in the integrand

 and 

are densities of (multivariate) normal distributions, and also because  and  are linearly
related.

ℓ(θ) =
n

∑
i=1

∫ p(yi/bi; θ)p(bi; θ)dbi

θ

p(yi/bi; θ) p(bi; θ)

yi bi
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What is the problem?

In GLMMs, the two terms of the integrand denote densities of di�erent distributions.
For example, in mixed e�ects logistic regression:

 ⟹ Bernoulli distribution

 ⟹ Multivariate Normal distribution

The implication is that in GLMMs, the same integral does not have a closed-form
solution.

The Solutions

To overcome this problem, two general types of solutions have been proposed:

Approximation of the integrand: This entails approximating the product inside the
integral (i.e., ) by a multivariate normal distribution for which the

integral has a closed-form solution:
Penalized Quasi Likelihood (PQL)
Laplace approximation

p(yi/bi; θ)

p(bi; θ)

p(yi/bi; θ)p(bi; θ)
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Approximation of the integral: This entails approximating the whole integral (i.e.,
) by a sum:

Gaussian Quadrature (GQ) & Adaptive Gaussian Quadrature (AGQ)
Monte Carlo & MCMC (Bayesian approach)

From the two alternatives, methods that rely on approximation of the integral (GQ,
AGQ) have been shown to be superior.

Though they are (much) more computationally demanding, they have a parameter
that controls the accuracy of the approximation:

In GQ rules, it is the number of quadrature points (nGQ=1) point is equivalent
to the Laplace approximation.

AGQ needs fewer quadrature points than classical GQ but is more time-
consuming.

The Laplace approximation is a good choice when dealing with many
repeated measures per subject.

The higher nGQ (nAGQ), the more accurate the approximation will be.

∫ p(yi/bi; θ)p(bi; θ)
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Estimation of random e�ects in GLMMs

Estimation of the random e�ects proceeds in a similar manner as in linear mixed
models.

Predictions of random e�ects can be based on the posterior distribution
.

Empirical Bayes (EB) estimate:

May be used when interest is in predicting subject-speci�c evolutions.

Identifying subjects with outlying evolutions.
Estimation is based on the posterior distribution of .
Posterior mode used as estimate.

With EB estimates, , subject-speci�c probability pro�le:

f(bi/Yi = yi)

bi

b̂i

P( ˆYij = 1|bi) =
exp(Xijβ̂ + Zij b̂i)

1 + exp(Xijβ̂ + Zij b̂i)
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Conditional interpretation of  in GLMMs

 in GLMMs has a conditional interpretation.

The parameters are conditional on the random e�ects.

Interpretation of the �xed-e�ects coe�cients:

For example,  does not have the interpretation of the average Odds Ratio (OR)
for a unit increase in follow-up.

The parameters are conditional on the random e�ects.

Considers the e�ect of predictors while accounting for variability between groups due
to random e�ects.

β

β

eβ
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GLMMs in R

Packages: lme4 and GLMMadaptive

The function that �ts GLMMs in lme4 is glmer()

this has similar syntax as the lmer() function that �ts linear mixed models,
namely:

formula: specifying the response vector, the �xed- and random-e�ects structure

data: a data frame containing all the variables

family: specifying the distribution of the outcome and the link function

nAGQ: the number of quadrature points

174 / 220



GLMMs in R: lme4

Fits a mixed e�ects logistic regression for Toenail data with random intercepts and 15
quadrature points for the adaptive Gauss-Hermite rule:
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library(lme4)
glmmFit <- glmer(y ~ treatn*time + (1 | idnum), family = binomial(), 
                 data = toenail, nAGQ = 15)
summary(glmmFit)

## Generalized linear mixed model fit by maximum likelihood (Adaptive
##   Gauss-Hermite Quadrature, nAGQ = 15) [glmerMod]
##  Family: binomial  ( logit )
## Formula: y ~ treatn * time + (1 | idnum)
##    Data: toenail
## 
##      AIC      BIC   logLik deviance df.resid 
##   1257.1   1284.9   -623.6   1247.1     1902 
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -2.963 -0.189 -0.087 -0.007 38.155 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  idnum  (Intercept) 16.52    4.065   
## Number of obs: 1907, groups:  idnum, 294
## 
## Fixed effects:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -1.65962    0.44595  -3.722 0.000198 ***
## treatn      -0.12255    0.59377  -0.206 0.836478    
## time        -0.40569    0.04619  -8.783  < 2e-16 ***
## treatn:time 0 15962 0 07222 2 210 0 027085 *
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GLMMs in R: GLMMadaptive

The function that �ts GLMMs in GLMMadaptive is mixed_model(). To �t the same
model as we did above with glmer(), the code is:

library(GLMMadaptive)
glmmFit2 <- mixed_model(y ~ treatn*time, random = ~ 1 | idnum, 
             family = binomial(), data = toenail, nAGQ = 15)
summary(glmmFit2)

## 
## Call:
## mixed_model(fixed = y ~ treatn * time, random = ~1 | idnum, data = toenail, 
##     family = binomial(), nAGQ = 15)
## 
## Data Descriptives:
## Number of Observations: 1907
## Number of Groups: 294 
## 
## Model:
##  family: binomial
##  link: logit 
## 
## Fit statistics:
##    log.Lik      AIC      BIC
##  -623.5842 1257.168 1275.586
##
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GLMMs in R

Di�erences between glmer() (package lme4) and mixed_model() (package
GLMMadaptive):

glmer() only provides the adaptive Gaussian quadrature rule for the random
intercepts case, whereas mixed_model() uses this integration method with several
random terms.

mixed_model() currently only handles a single grouping factor for the random e�ects,
i.e., you cannot �t nested or crossed random e�ects, whereas such designs can be
�tted with glmer().

mixed_model() can �t zero-in�ated Poisson and negative binomial data, allowing for
random e�ects in the zero part.
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Model building

Model building for GLMMs proceeds in the same manner as for LMMs, i.e.:

We start with an elaborate speci�cation of

the �xed-e�ects structure that contains all the variables we wish to study, and

potential nonlinear and interaction terms.

Following that, we build up the random-e�ects structure,

starting from random intercepts, and then potentially

including random slopes, quadratic slopes, etc.

At each step, we perform Likelihood Ratio Tests (LRTs) to determine if including the
additional random e�ect improves the �t of the model.
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Model Building----(2)

After choosing the random-e�ects structure, we return to the �xed e�ects and assess
whether the speci�cation can be simpli�ed.

Once again, we start by testing complex terms

i.e., interactions and nonlinear terms), and

then proceed to drop explanatory variables if required.

In practice, quite often, and especially for dichotomous data, extending the random-
e�ects structure may lead to numerical/computational problems

– This is because dichotomous data contain the least amount of information

Hence, for dichotomous data and when we have few to moderate number of
repeated measurements per subject, we often can only �t random intercepts
models
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Pros and Cons of GLMMs

Advantages

Possible to have a more complex variance component structures (multi-level models,
random regression).

Fully speci�ed models allow for e.g. power calculations.

Likelihood inference inherently handles data that are missing at random optimally.

Drawbacks

More model assumptions, thus higher risk of misspeci�cation.

Impossible to check assumptions about the random e�ects.

Computationally infeasible when the number of random e�ects or the overall
size of the data becomes large.
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Comparision of GEE and GLMM

Normally distributed outcomes:

Variance component model with random intercept is the same as a repeated
measurements model with compound symmetry covariance pattern.

Other-than-normal type outcomes:

GEE and GLMMs are inherently di�erent statistical methods!

They di�er in interpretation.

They di�er in actual �gures, i.e. estimates and SEs.
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Comparison using the Jimma Infant Data

The response variable is categorized body mass index.

The following model is assumed for the mean structure:

Exchangeable correlation (or CS)

 is a gender indicator.  is age of the  infant at time  (also the time

variable).

Yij = { 1 if weight ≤ 2500
0 otherwise

Yij|bi ∼ Bernoulli(πij),  for subject i and measurement j,

Yij ∼ Bernoulli(πij)

logit(πij) = β0 + β1Ageij + β2Genderi + β3GenderiAgeij

Genderi Ageij ith j
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Fitting GEE model

using unstructured working corelation

fit1 <- geeglm(BMIBIN ~ sex + age + sex * age, id = ind, data = Infant, 
               family = binomial, corstr = "exchangeable", scale.fix = TRUE)

Fitting GLMM model

, for subject  and measurement ,

random intercepts , i.e., , can be included to capture the correlation.

The logit of  is modeled as:

fitGLMM <- glmer(BMIBIN ~ sex + age + sex * age + (1 | ind),
                 data = Infant, family = binomial(link = "logit"), nAGQ = 25)
#print(round(summary(fitGLMM)$coefficients, 3))

Yij|bi ∼ Bernoulli(πij) i j

bi bi ∼ N(0, d)

πij

logit(πij) = β0 + β1Ageij + β2Genderi + β3GenderiAgeij + bi
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Jimma infant: GEE vs GLMM Estimates

Regression coe�cients are highly similar (a mathematical truth). GLMM estimates a
smaller intercept than GEE.

Method Parameter Estimate (SE) P-value

GEE Intercept -1.869(0.112) -

Sex 1.133 (0.154) 0.388

age 0.001 (0.015) 0.925

Sex*age -0.017 (0.021) 0.435

GLMM Intercept -2.333 (0.127) -

Sex 0.159 (0.164) 0.331

Sex*age 0.002 (0.015) 0.895

Sex*age -0.020 (0.021) 0.333

Should we prefer GLMM for this reason?
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Model with random intercept and slope

The model with random intercept and slope can be �tted similarly. The following model is
assumed for the mean structure:

, for subject  and measurement 

Gaussian distributed random intercepts , i.e., , can be included

to capture the correlation.

The logit of the probability  is given by:

Yij|bi ∼ Bernoulli(πij) i j

bi (b0i, b1i) ∼ N(0,D)

πij

logit(πij) = β0 + β1Ageij + β2Genderi + β3GenderiAgeij + b0i + b1iAgeij
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Random intercept and slope model:

fitGLMMSlope <- glmer(BMIBIN~ sex + age + sex*age + (1+age|ind),
data = Infant, family = binomial(link = "logit"))
print(round(summary(fitGLMMSlope)$coefficients, 3))

##               Estimate Std. Error z value Pr(>|z|)
## (Intercept)     -2.512      0.178 -14.076    0.000
## sexfemale       -0.173      0.199  -0.869    0.385
## age             -0.026      0.025  -1.038    0.299
## sexfemale:age    0.024      0.028   0.874    0.382

# Extracting variance components for random effects
print(VarCorr(fitGLMMSlope))

##  Groups Name        Std.Dev. Corr  
##  ind    (Intercept) 1.90821        
##         age         0.24029  -0.708
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Marginal model or GLMM – which should I prefer?

Conceptual di�erences

Population Risk vs Individual Risk:

Marginal Model focuses on population-level risk.
GLMM accounts for individual-level risk.

Choose a model that answers your scienti�c question:

Modeling di�erences

Covariance pattern or random e�ects model?
GEE is more robust regarding model variations:
Choose a model that is realistic for your data:

Computational di�erences

Handling of missing data is easier in GLMMs:
GLMMs become infeasible with large Data:
GEE standard errors are biased in small data:
Choose a model that can handle your data: 188 / 220



Day 4Day 4

Missing Data ManagementMissing Data Management

What is missing data – de�nition, patterns, mechanisms (MCR, MR, NMR)What is missing data – de�nition, patterns, mechanisms (MCR, MR, NMR)

Simple methods for handling missing dataSimple methods for handling missing data

Multiple Imputation (MI) based proceduresMultiple Imputation (MI) based procedures

Weighted GEEWeighted GEE
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Introduction

Missing data: Absence of recorded information for certain observations or variables
in a dataset.

Missing data is very common in statistical analysis.

Challenges: Biased results, reduced statistical power, loss of information in analysis.

Impact: Requires careful handling to avoid misleading conclusions.

Importance: Addressing missing data ensures accurate and reliable data analysis and
interpretation.
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Sources of Missing Data

Non-Response: Participants don't provide certain information.

Loss to Follow-Up: Participants drop out of a study before completion.

Measurement Error: Errors during data collection lead to missing values.

Skip Patterns: Questions skipped based on previous responses.

Data Entry Mistakes: Errors during data entry or coding.

Equipment Failure: Instruments or equipment malfunction during data collection.

Sensitive Data: Participants omit sensitive information.

Study Design: Data collection methods inherently result in gaps.

Natural Causes: Unforeseen events impacting data collection.

Processing Errors: Errors during data processing or transformation.
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Implications of Missing Data

Missing Data Produces/Induces:

Loss of information and reduced e�ciency.

Extent of Information Loss Depends on:

Amount of missingness.
Missingness pattern.
Association between the missing and observed data.
Parameters of interest.
Method of analysis.

Care is Needed to Avoid Biased Inferences:

Inferences that target a reference population other than intended.
For example, those who stay in the study.
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Answer #3:
% (Schafer, 1999)

% (Bennett, 2001)
% (Peng, et al., 2006)

Answer #4 (Widaman, 2006):
1%-2% (Negligible)
5%-10% (Minor)
10%-25% (Moderate)
25%-50% (High)

% (Excessive)

How Much Missing Data is "Problematic"?

Depends on who you ask...

Answer #1:

ANY amount of missing data might be considered problematic.

Answer #2:

It's never "too much."
Optimal methods can easily accommodate up to 50% missing data.

> 5
> 10
> 20

> 50
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What to Consider

Dealing with missing data requires considering the missing data patterns,
mechanisms, proportion, and the chosen analytic approach.

Missing data pattern: examine the missing data pattern,(monotone, intermittent, or
arbitrary structure), can guide the selection of suitable methods.

Proportion of Missing data: High levels of missingness may impact the validity of
analyses and may require more sophisticated handling techniques.

Reasons for missing data: identifying the reasons can help mitigate potential biases.

Ensure robust analyses in longitudinal studies when there is missing data.
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Missing Data in Longitudinal Studies

Monotone Missing Data Pattern

Missing data follows a consistent direction (either always increasing or always
decreasing) across observations.

Common in longitudinal studies where participants drop out progressively over time.

May arise due to systematic reasons such as treatment e�ects or participant attrition.

Example: Participants dropping out of a study as time progresses.

Study Time1 Time2 Time3

1 X X X

2 X X .

3 X . .
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Intermittent/Arbitrary Missing Data Pattern

Missing data occurs randomly or sporadically across observations without a
consistent direction.

Common in cross-sectional and longitudinal studies where participants may miss data
points randomly.

Can arise due to factors like random non-response or data collection errors.

Example: Participants missing certain measurements for various reasons at di�erent
time points.

Study Time1 Time2 Time3

1 X X X

2 X . X

3 . X X

4 . . X

5 . X .
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Comparison:

Data Collection Context:

Monotone: Often observed in longitudinal studies.
Intermittent: Can occur in various study designs.

Handling:

Monotone: Some methods like FOCF might be suitable.
Intermittent: Requires more �exible imputation methods or techniques that account
for random missingness.

Bias:

Monotone: Biases can occur if the assumption of similarity between consecutive
observations is violated.
Intermittent: Imputed values might not be as biased as long as missingness is
random.
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Types of Missing Data

Looking carefully the causes of missingness enable us to employee the appropriate
missing data management system.

Estimation of the parameter with missing data depends on the missing data
mechanism.

The missing data mechanism is a probability model for missingness.

Data is often described in accordance to the reasons for the missing data.

According to the mechanisms of missingness, we assume three types of missing
data.

Missing Completely at Random (MCAR)

Missing at Random (MAR)

Not Missing at Random (NMAR)
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1. Missing Completely at Random (MCAR)

In MCAR, missingness is assumed to be independent of both observed and
unobserved data.

The notation of the MCAR mechanism is expressed as follows:

Where:

 is a vector of partially observed data, that is, .

 is a set of missing indicators, i.e.,  if the  element of  is observed,
and  if the  element of  is missing (Rubin, 1976).

MCAR is also known as ignorable missing in statistical inference.

p(R|Y ) = p(R|Y obs,Y mis) = p(R)

Y Y = (Y obs,Y mis)

R R = 1 jth Y

R = 0 jth Y
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Examples of MCAR data include:

Data with missing values due to equipment failure.

Samples lost in transit.

Data that is technically unsatisfactory.

Characteristics of MCAR:

The missing data does not introduce any bias in statistical analyses.

Estimated parameters are not biased as a result of the missing data.

Challenges of MCAR:

Statistical power may be decreased due to the loss of information from the missing
data.
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2. Missing at Random (MAR)

Missingness depends only on observed components , not on missing
components .

Expressed through the formula:

The missingness pattern is completely determined by the observed data.

The missingness mechanism does not depend on the actual missing values.

The missing data mechanism can be ignored in likelihood inference

Ignorable Missing Data Mechanism

Estimates of parameters remain unbiased even with missing data.

Y obs

Y mis

p(R|Y obs,Y mis) = p(R|Y obs)
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Examples

study protocol requires patients whose response value exceeds a threshold to be
removed from the study
physicians give rescue medication to patients who do not respond to treatment

Features of MAR include:

The observed data cannot be considered a random sample from the target
population.
Not all statistical procedures provide valid results under MAR.

Not Valid under MAR Valid under MAR

Sample Marginal Evolutions Sample Subject-Speci�c Evolutions

Methods Based on Moments Likelihood-Based Inference

Mixed Models with Misspeci�ed
Correlation Structure

Mixed Models with Correctly Speci�ed
Correlation Structure

Marginal Residuals Subject-Speci�c Residuals
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3. Not Missing at Random (NMAR)

NMAR suggests that the probability of a value being missing �uctuates for reasons
unknown to us.

NMAR occurs when the characteristics of missing data do not meet those of MCAR
and MAR mechanisms.

In NMAR, the probability of missingness is in�uenced by both the observed value
 and the unobserved missing value .

The NMAR missing data mechanism can be represented by the following equation:

Due to the presence of this dependency, NMAR is considered a non-ignorable missing
data mechanism.

Real-world examples are often subtle and challenging to identify.

(Y obs) (Y mis)

p(R|Y obs,Y mis) = p(R|Y obs,Y mis)
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Examples

in studies on drug addicts, people who return to drugs are less likely than others to
report their status
in longitudinal studies for quality-of-life, patients may fail to complete the
questionnaire at occasions when their quality-of-life is compromised

Features of MNAR include:

The observed data cannot be considered a random sample from the target
population.

Only procedures that explicitly model the joint distribution  provide valid

inferences.

Analyses that are valid under MAR will not be valid under MNAR.

We cannot distinguish from the data at hand whether the missing data mechanism is
MAR or MNAR

We can distinguish between MCAR and MAR

often use sensitivity analyses and model-based imputation techniques.

yoi , ymi ,R
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Common Methods of Missing Data Treatments for Longitudinal Data

Simple Methods

Complete Case Analysis: Analyzing only cases with complete data at all time
points.
Last Observation Carried Forward (LOCF): Imputing missing values with last
observed value.

Modern Methods

Multiple Imputation: Generating multiple plausible imputed datasets.

Captures uncertainty, provides accurate parameter estimates.

Likelihood-based Methods: Uses full likelihood with missing data mechanism
speci�ed.

Requires correct model speci�cation, might be complex for large datasets.

Weighted GEE (Generalized Estimating Equations): Accounts for correlation in
repeated measurements.

Weighted analysis, e�ective for longitudinal studies.
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Simple Methods

Complete Case Analysis

Discards valuable information, can lead to biased results if missingness is related to
unobserved variables.

The most commonly used approach that data scientists use to deal with missing data
is to simply omit cases with missing data, only analysing the rest of the dataset.

This method is known as listwise deletion or complete-case analysis.

The na.omit() function in R removes all cases with one or more missing data values in
a dataset.
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Complete Case Analysis

Example for Complete Case Analysis (Listwise Deletion) example using the HIVdata dataset.

First lets explore the missing value and pattern using

library(readr); library(naniar)
HIVdata <- read_csv("Data/HIVdata.csv")
#miss_var_summary(HIVdata)
miss_var_table(HIVdata)

## # A tibble: 2 × 3
##   n_miss_in_var n_vars pct_vars
##           <int>  <int>    <dbl>
## 1             0      9       90
## 2           652      1       10
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We can also look the missing pattern at each time point

library(dplyr)
HIVdata %>% select(cd4, time) %>% group_by(time) %>% miss_var_summary()

## # A tibble: 7 × 4
## # Groups:   time [7]
##    time variable n_miss pct_miss
##   <dbl> <chr>     <int>    <num>
## 1     0 cd4           0      0  
## 2     6 cd4          52     15.5
## 3    12 cd4          82     24.5
## 4    18 cd4         118     35.2
## 5    24 cd4         127     37.9
## 6    30 cd4         131     39.1
## 7    36 cd4         142     42.4
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Before remove na's

fit1 <- lmer(cd4 ~ time + (1 | id), 
             data = HIVdata)
summary(fit1)

## Linear mixed model fit by REML ['lmerMod']
## Formula: cd4 ~ time + (1 | id)
##    Data: HIVdata
## 
## REML criterion at convergence: 21204
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.7303 -0.5130 -0.0152  0.4594  5.8864 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 20542    143.3   
##  Residual             10043    100.2   
## Number of obs: 1693, groups:  id, 335
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept) 208.0725 8.8094 23.62

After removal na's

cc_data <- na.omit(HIVdata)
cc_model<- lmer(cd4 ~time +(1|id), 
              data = cc_data)
summary(cc_model)

## Linear mixed model fit by REML ['lmerMod']
## Formula: cd4 ~ time + (1 | id)
##    Data: cc_data
## 
## REML criterion at convergence: 21204
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.7303 -0.5130 -0.0152  0.4594  5.8864 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 20542    143.3   
##  Residual             10043    100.2   
## Number of obs: 1693, groups:  id, 335
## 
## Fixed effects:
## Estimate Std. Error t value

Now �t a linear mixed-e�ects model to the complete data:
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Last Observation Carried Forward (LOCF) Method

Replace Missing Values: In LOCF, missing values are imputed by carrying forward
the last observed value.

Assumes unrealistic constant pro�le after dropout, introduces bias.
Bias Concerns: LOCF introduces bias by assuming the last observed value
accurately represents the participant's status. However, this disregards potential
changes or �uctuations after the last observation, impacting analysis validity and
conclusions.

To perform the LOCF imputation method, we simply run the

�ll() function from the tidyr package on the dataset and the variable with the
missing data.
lna.locf() function in zoo
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library(zoo)
LOCF_data2 <- na.locf(HIVdata)
model_locf2 <- lmer(cd4 ~ time + (1 | id), data = LOCF_data2)
summary(model_locf2)

## Linear mixed model fit by REML ['lmerMod']
## Formula: cd4 ~ time + (1 | id)
##    Data: LOCF_data2
## 
## REML criterion at convergence: 30694.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6241 -0.5259 -0.0920  0.4296  7.2089 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 12410    111.4   
##  Residual             22684    150.6   
## Number of obs: 2345, groups:  id, 335
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept) 223.1570     8.2756   26.97
## time          6.2135     0.2592   23.97
## 
## Correlation of Fixed Effects:
##      (Intr)
## time 0 564
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Mean Imputation in Longitudinal Data

Mean Imputation: A simple method to handle missing values in longitudinal data.

Approach: Replace missing values with the mean of the observed values for the same
variable across time points.

Simple and straightforward method to handle missing values.

Easy to implement and interpret.

Maintains the structure of the dataset.

May introduce bias if the missing data mechanism is not missing completely at
random (MCAR).

Does not account for individual variation or trends over time.
Reduces variability in the imputed variable, potentially underestimating
uncertainty.
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Example

library(dplyr)
# Replace missing values with cd4 means
imputed_data <- HIVdata %>%  group_by(id) %>%
  mutate(cd4 = ifelse(is.na(cd4), mean(cd4, na.rm = TRUE), cd4))
model_mean_imputed <- lmer(cd4 ~ time + (1 | id), data = imputed_data)
summary(model_mean_imputed)

## Linear mixed model fit by REML ['lmerMod']
## Formula: cd4 ~ time + (1 | id)
##    Data: imputed_data
## 
## REML criterion at convergence: 28803.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -6.4796 -0.5200 -0.0299  0.4747  6.4495 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 21159    145.46  
##  Residual              8342     91.34  
## Number of obs: 2345, groups:  id, 335
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept) 225 5415 8 6443 26 09
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Multiple Imputation

Multiple imputation is a process that is done in 3 main steps:

This gives the imputed data a valid statistical inference.

Steps for Multiple Imputation:

Firstly, generate m multiple imputed datasets.

Secondly, analyze each imputed dataset, then there should be m analyses.

Lastly, combine the results for the pooled dataset.

Multiple imputation is robust to small sample sizes or lots of missing data.
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Steps in applying multiple imputation to missing data via the mice approach

The estimate of the parameter  is simply the average of each parameter estimate
 obtained over the m imputed datasets (m = 1, ..., M):

β
βm

β̂
∗

=
M

∑
m=1

β̂
m1

M
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The variance of the estimator is partitioned into within imputation variance (sampling
variability), and the between imputation variance (estimation variability due to
missing data).

The within imputation variance, , over the m imputed datasets is:

The between imputation variance, , over the m imputed datasets is:

These two variances are combined to provide a single variance, given by

Wβ

Wβ =
∑M

m=1 SE
2
β

M

Bβ

Bβ =
(∑M

m=1 (β̂
m

− β̂
∗
)

2
)

M − 1

Tβ = Wβ + [ ]Bβ

(M + 1)
M
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Let's look at it using the mice() function

library(mice)
data.mice <- mice(HIVdata, m=5, method = "pmm", printFlag=FALSE, print = FALSE)

m=5 is to generate 5 imputed data,

di�erent prediction model was used for di�erent type of variable

pmm: predicted mean matching
logreg: logistic regression
polr: ordinal logistic regression

usually, one needs only 5 replicates for model building/testing, 20 to 100 for �nal
model
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library(broom.mixed)
mice.fit <- with(data.mice, lmer(cd4 ~ time + (1 | id)))
summary(pool(mice.fit))

##          term   estimate std.error statistic       df      p.value
## 1 (Intercept) 220.519104 8.2103751  26.85859 503.6273 2.865733e-99
## 2        time   5.999481 0.2706195  22.16944 139.1785 1.646115e-47
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Now we can extract the completed dataset using the complete() function.

library(tidyr)
impdata <- mice::complete(data.mice, action = "long", inc = F)
#View(impdata)

The missing values have been replaced with the imputed values in the �rst of the �ve
datasets.
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Multiple Imputation Software

Amelia in R (by Gary King and collaborators)
mi in R (by Andrew Gelman and collaborators)
mice in R (by Stef van Buuren and collaborators)
SPSS (Analyze > Multiple Imputation)
STATA mi estimate
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