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Outlines

1. Introduction to causal inference

2. Randomised experiments

3. Observational studies

4. Method for estimating causal e�ects in observational data

5. Marginal structural models (MSM)

6. Doubly Robust (DR) estimators - combination methods

7. Marginal Mean Weighting through Strati�cation (MMWS)

8. Causal inference from survival and longitudinal data
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1 Introduction to causal inference

Outline

Motivation for causal inference
Causal inference framework
Potential outcomes framework / counterfactuals model
Fundamental problem of causal inference
De�ning and measures of causal/treatment e�ects (individual and average)
Causation versus association
Assumptions for causal inference
Random variability
Roadmap to causal e�ect estimation

Readings:

Chapter 1. MH&JR
Rubin DR. 1974
Holland, 1986
Chapter 1. Rosenbaum PR - Design of Observational Studies
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Objectives

Motivate reasons for causal inference
Present a framework for Causal inference
De�ne causal e�ect
De�ne measures of causal e�ect
Distinguish between causation and association
Assumptions for causal inference
Understand random variability in causal inference
Roadmap to causal e�ect estimation
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Introduction

Aim of most epidemiological studies is to search for causes of diseases.

Clinical studies aim to establish e�ects of treatments or interventions.

The existence of other factors related to outcomes and exposures distort relationships of
interest causal inference.

There are various data analysis approaches to estimate the causal e�ect of interest under
a particular set of assumptions when data are collected on each individual in a population.

Numerical quantities that measure changes in the distribution of an outcome under
di�erent interventions.
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Motivation for causal inference

We ask questions so that we can take action.

Example

What is the e�ect of smoking on lung cancer?
What is the e�ect of exercise on hypertension?
What is the e�ect of Prevention of Mother to Child Transmission (PMTCT) intervention on
transmission of HIV from infected mother to baby?
What is the e�ect of nurse task shifting on quality of HIV care of infected patients?
What is the e�ect of transport reimbursement on antenatal care (ANC) attendance among
pregnant women?
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HIV causes AIDS

How would you establish this fact?
We cannot do such an experiment in humans.
We can do it with mice or monkeys.
In humans, we observe those infected versus not infected.
There are potential di�erences between people with and those without HIV - not
comparable.
However, we can easily determine association.
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Observational studies

Treatment groups not directly comparable.

Biased treatment or exposure e�ects.

Statistical adjustment for confounders.

Does co�ee drinking cause lung cancer?

If a co�ee drinker is more likely to be a smoker but the study only measured co�ee
drinking, results may show co�ee drinking increases the risk of lung cancer.

With smoking recognized as a confounder, adjustments can be made in study design or
data analysis.

Without adjustment, risk of false positive (Type I) error.

What is a confounder?
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Simpson’s Paradox

Results from a study into a new drug on recovery among sick patients

Drug No Drug

Men 81/87(93%) 234/270 (87%)

Women 192/263(73%) 55/80 (69%)

Combined 273/350(78%) 289/350(83%)

Drug on recovery better in men and women but not in a combined sex.
What is policy recommendation - to treat or not to treat?

Always understand the story behind the data - causal mechanism.

We need additional information/fact
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Women taking drug = 77% compared to 24% in men.
Randomly selecting a drug user likely to be a woman less likely to recover
Randomly selecting a non-drug user likely to be a man more likely to recover
E�ectiveness require that you compare like to like - remove e�ect of estrogen

Abbreviations: D: Drug, R: Recovery, E: Estrogen, G: Gender
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Example: Relationship between Cholesterol, Exercise and Age

Relationship between cholesterol and exercise is negative within age group.
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Relationship between Cholestrol and Exercise (without considering age)

The relationship distorts/in opposite due to confounder age.
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De�ning causal inference

De�nition

Variable X is a cause of a variable Y if Y in anyway relies on X for its value.

X is a cause of Y if Y listens to X and decides its value on what it hears.

Causal inference using the Neyman-Rubin potential outcome framework allows
adjustment for confounders under structural causal assumptions.
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The story of Zeus and Hera

Zeus is a heart transplant patient.
Jan 1, receives a heart transplant (A = 1), dies 5 days later (Y = 1).
Suppose somehow we know (by divine revelation), had Zeus not received heart transplant
(A = 0), he would be alive 5 days later (Y = 0).
Based on this info, we can conclude that the heart transplant caused Zeus’s demise.
The heart transplant intervention had a causal e�ect on Zeus’s �ve-day survival.

Another patient,Hera, is alive (Y = 1) 5 days after receiving heart plant. We also know
(mysteriously), had she not received a heart transplant, she would still be alive 5 days later
(Y = 1). Then the heart transplant did not have a causal e�ect on Hera.
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Notation

Let A represent an intervention, treatment or exposure or policy.

Assume A takes values 1: treated, 0: untreated.

Let Y represent the outcome with values 1:death, 0: survival
A and Y are random variables.
Let  (read as Y under treatment ) be the outcome variable that would be
observed under treatment value a = 1.

Let  be the outcome variable that would be observed under treatment value a = 0.

 and  are also random variables.

 and  are known as potential outcomes or counterfactual outcomes

What are Zeus’s and Hera’s potential outcomes?

Z:  ... Treat cause of death vs H:  ... not cause of death

Y a=1 a = 1

Y a=0

Y a=1 Y a=0

Y a=1 Y a=0

Y 1 = 1 ≠ Y 0 = 0 Y 1 = Y 0 = 0
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Individual causal e�ect

De�nition

Treatment A has a causal e�ect on an individual’s outcome Y if  for the
individual.

Causal e�ect for individual : 
The action A has a causal e�ect, causative or preventive on the outcome.

Fundamental problem of causal inference

We estimate individual causal e�ects by comparing the counterfactuals. But for each
individual, we observe only one of the counterfactuals corresponding to the treatment
the individual received.

We have a missing data problem - hence individual causal e�ects cannot be estimated
from the observed data

Y a=1 ≠ Y a=0

i Y a=1
i ≠ Y a=0

i
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Average Treatment E�ect (ATE)

 - Risk di�erence

 if Y is binary: Proportion di�erence.
 if Y is continuous: mean di�erence.

E[Y a=1 − Y a=0] = E[Y a=1] − E[Y a=0] = P1 − P0

P1 − P0

μ1 − μ0

E[Y a=1×(1−E[Y a=0])]

(1−E[Y a=1)×E[Y a=0]
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Measures of causal e�ect

Consider a binomial outcome Y taking values {0, 1}. Causal E�ect measures could be:

1.  risk di�erence

2.  risk ratio

3.  odds ratio

4.  number needed to treat (NNT).

NNT is equal to the reciprocal of the absolute value of the causal risk di�erence.

Pr[Y 1 = 1] − Pr[Y 0 = 1]⟹

⟹
Pr[Y 1=1]

Pr[Y 0=1]

⟹
Pr[Y 1=1]=Pr[Y 1=0]

Pr[Y 0=1]=Pr[Y 0=0]

⟹
−1

Pr[Y 1=1]−Pr[Y 0=1]
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Average Causal E�ect (ACE)

Hypothetical complete data

If everyone had received treatment, the average outcome would be 
If everyone had not received treatment, the average outcome would be 
Then an average causal e�ect of treatment A on outcome Y exists if 
Absence of average causal e�ect does not mean absence of individual causal e�ect

E(Y 1) = ȳ1

E(Y 0) = ȳ0

E(Y 1) ≠ E(Y 0)

20 / 124



Notation

Complete data:

Observed data: missing data problem

We only get to observe one of the counterfactuals (either receive treatment or not)

X = (W ;Y 1;Y 0) = (W ;Y a : a ∈ A)

O = (W ;A;Y )
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Association

From the observed data 

Estimate conditional means: 

When  independence i.e. treatment A and outcome Y are
not associated

Independence - Associational measures on di�erent scales

i. Associational risk di�erence (RD)

ii. Associational risk ratio (RR)

iii. Associational odds ratio (OR)

Association (categorical) or correlation (continuous)
No association when: RD = 0, RR = 1, OR = 1.

O = (W ,A,Y ) :

E(Y |A = a)

E(Y |A = 1) = E(Y |A = 0) ⇒
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Illustration of causation and association
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Causation versus association

In association, we deal with conditional expectations - in a subset of the population

In causation, we deal with unconditional or marginal expectations

in entire population

Association implies di�erent risks in two disjoint subsets of the population determined by
subjects’ actual treatment

Causation is de�ned by a di�erent risk in entire population under two di�erent
treatments
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Assumptions

To identify ATE, some assumptions are required:

Conditional exchangeability
Positivity

Consistency
For each subject, one of the counterfactual outcomes is actually factual.
A subject with observed treatment A = a has observed outcome Y equal to the
counterfactual outcome .

Noninterference
No interaction between units - independence.

Pr(A = a) > 0

Y a

Y = Y A
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STUVA (stable-unit-treatment-value assumption)- treatment variation irrelevance

Implicit assumption in de�ning counterfactual outcomes under treatment value a
is that there is only one version of treatment value A = a
If there are di�erent versions of same treatment (surgery performed by a di�erent
surgeon), then the counterfactuals on same person could be di�erent
The assumption of no multiple versions of treatment is included in the STUVA
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The presence of random variability

We only have information on a sample of the population - sampling variability.
This prevents us from obtaining the exact proportion (or mean) in the population who had
the outcome under treatment a
Random error due to sampling variability prevents us from getting the exact population
proportion
We therefore use  to estimate 

 is a consistent estimator of  because as 

We therefore need a statistical test to quantify the chance that any di�erence between the
counterfactuals is wholly due to sampling variability

P̂r[Y a = 1] Pr[Y a = 1]

P̂r[Y a = 1] Pr[Y a = 1] n → ∞

P̂r[Y a = 1] − Pr[Y a = 1]) < ϵ
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Roadmap to causal e�ect estimation

Study design - randomisation
Regression
G-formula (standardisation)
G-computation
Propensity scores (inverse weighting, strati�cation, matching)

Double Robust methods (AIPTW and TMLE)

Abbreviation:

AIPTW: Augmented Inverse Proportional/Probability of Weights
TMLE: Targeted Maximum Likelihood Estimator
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2 Randomised experiments and observational studies

Outline

Introduction
Randomised experiments and exchangeability

Conditional Randomisation
Example study
Strati�cation
Estimating average causal e�ects
Standardisation
Inverse probability weighting
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Objectives

To demonstrate why randomised studies are convincing for causal inference.
Understand the concept of exchangeability.
Estimating causal e�ects under conditional randomisation.

Readings

Chpt 2. MH JR
Holland, 1986
Chpt 1. PRR - DOS
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2.1 Introduction

Fundamental problem of causal inference - missing data

Since we can not observe all potential outcomes, causal inference becomes a prediction
problem

How?

Find close substitutes for the potential outcomes (e.g. rats experiments, pre-post etc)
Randomisation
Statistical adjustment
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2.2 Randomised experiments

All studies generate data with missing counterfactuals.
Randomisation ensures that those missing values occurred by chance.
E�ects can be consistently estimated in randomised studies despite the missing data.
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2.3 Exchangeability

Study

Suppose treatment A is randomised to our study sample using a coin toss: heads -
treatment (A = 1) and tails - no treatment (A = 0).
If the coin is not fair, we end up with more people in one group than the other.
Research assistants administer treatment to the groups. After 5 days, we compute risk of
mortality in the groups.

 and

Associational e�ect

risk ratio,  and
risk di�erence, 

What would have happened if the research assistants had misheard the

instructions and reversed the treatments? The risk under potential treatment
value a among the treated equals the risk under potential treatment value a among the
untreated. 

P [Y = 1|A = 0] = 0.3

P [Y = 1|A = 1] = 0.6

RR = p1/p0 = 0.6/0.3 = 2
RD = p1 − p0 = 0.6 − 0.3 = 0.3

P [Y a = 1|A = 1] = P [Y a = 1|A = 0] = P [Y a = 1] ⇒ Y a ⊥⊥ A
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2.4 Counterfactuals under exchangeability

In an ideal randomized experiment:

No loss to follow-up.
Full adherence to the assigned treatment over the duration of the study.
Single variation of treatment (STUVA).
Double blinded assignment

We can compute counterfactual risk under treatment in the population

It is equal to the risk in the treated 

Similarly, 

In an ideal randomised experiment, association is causation

Association  causation

P [Y a=1 = 1] = P [Y = 1/A = 1]
P [Y = 1|A = 1] = 0.6

P [Y a=0 = 1] = P [Y = 1|A = 0] = 0.3

⇒
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2.5 Full Exchangeability and Independence

Randomisation makes  jointly independent of A

Also written as

Proportion exchangeability:  OR
Mean exchangeability: 

However,

Y a

Y a ⊥⊥ A

Pr[Y a = 1|A = 1] = Pr[Y a = 1|A = 0]
E[Y a = 1|A = 1] = E[Y a = 1|A = 0]

Y a ⊥⊥ A ⇏ Y ⊥⊥ A : Counterfactuals ⇏ Outcomes
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Randomised study on the e�ectiveness of a new drug to prevent HIV infections in infants

We wish to study the e�ectiveness of a new HIV drug for preventing transmission of HIV
from infected mothers to their infants. We have two possible randomized designs we can
use:

1. We can randomly select 60% of the study population and give them the new drug. The
rest we keep them on the standard of care.

2. We can consider classifying pregnant women into two groups: high viremia (L=1)
and low viremia (L=0).

Randomly select 70% of women with high viremia and assign them the new drug and
the rest of the women with high viremia to standard
Randomly select 40% of women with low viremia and assign them the new drug and
the rest of the women to standard

Design 2 is a conditionally randomised experiment (why?) - strati�cation/blocking -
randomisation is restricted within each stratum.
Design 1 is a marginally randomised experiment
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2.6 Extending Exchangeability

Randomisation in design 1 is expected to induce exchangeability (counterfactuals
independent of treatment)
Conditional randomisation (design 2) will not generally result in exchangeability of the
treated and untreated (di�erent prognosis for each treatment group).

Design 2 is simply a combination of two marginally randomised experiments.

In each subset , treated and untreated are exchangeable

Conditional exchangeability

(L = l)
Pr[Y a = 1|A = 1;L = l] = Pr[Y a|A = 0;L = l]

⇒ Y a ⊥⊥ A/L
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Session 2 - Practical exercise (RCT)

A new anti retroviral drug has just been developed. We are interested in the e�ectiveness of
the new drug in reducing HIV transmission to infant at birth compared to the current standard
of treatment. A randomised controlled trial (RCT) is initiated where HIV positive pregnant
women are randomised to new drug with probability 0.4. Baseline viral load is also assessed at
baseline. The infant’s HIV infection status is assessed at birth using DNA PCR. Using R,
simulate the study data and estimate the e�ect of the new drug using the following
assumptions:

Let W be the baseline log viral load from a normal distribution with mean=3 and standard
deviation=1.
A is the treatment indicator variable with 0=standard of care and 1=new drug
Y is the infant’s HIV infection status with 0=not infected and 1=infected.
Assume

where

Assume a sample size n = 1000.

logit(E[Y a = 1|W ]) = β0 + β1a + β2w

β0 = −2,β1 = −1,β2 = 0.1
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Questions

1. Generate the pair of potential outcomes given the information above
2. Generate the observed data from the study
3. Check that randomisation of treatment was achieved
4. Demonstrate that the data satis�es exchangeability condition
5. Estimate the causal relative risk and risk di�erence
6. Repeat the experiment with n = 1,000,000 – what is the e�ect of increasing sample size?
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2.7 Computing causal e�ects under conditional randomisation

Under marginal exchangeablility, we know how to compute causal risk ratio, causal risk
di�erence etc.

How do we compute causal risk ratio or causal risk di�erence in a conditionally randomized
experiment?

1. Compute average causal risk ratio for each L = l using the associational risk ratio
Strati�cation
If CRR in strata L = 1 di�ers from CRR in strata L = 0, e�ect modi�cation

2. Compute average causal e�ect in the entire population
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2.8 Standardisation or G-formula

The marginal counterfactual risk  is the weighted average of the stratum
speci�c risks  :

The weights are the proportion of each stratum in the population 

By conditional exchangeability,

Pr[Y a = 1]
Pr[Y a = 1|L = l]

Pr[Y a = 1] =
L

∑
l=1

Pr[Y a = 1|L = l]Pr[L = l]

Pr[L = l] = Nl/N

Pr[Y a = 1|L = l] = Pr[Y a = 1|A = a,L = l]
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2.9 Inverse probability weighting

 is the counterfactual risk of death
had everybody in the population remain
untreated.

1. In strata  untreated died

2. If all 8 in strata  had been untreated 
would have died (conditional exchangeability)

3. In strata  untreated died

4. If all 12 in strata  had been untreated 
would have died

5 Therefore  would have died had all 20 not
been treated 

Similarly for 

Pr[Y a=0 = 1]

L = 0, 1
4

L = 0 2
8

L = 1, 2
3

L = 1 8
12

10
20

⇒ Pr[Y a=0 = 1] = 0.5

Pr[Y a=1 = 1]
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Pseudo-population

How does this work?

We have created a hypothetical population (pseudo-population) in which every individual
appears treated and untreated
The 4 untreated in  are used to create a pseudo-population of untreated by
weighting each individual by 2 which comes from .

The pseudo-population is created by weighting each individual by the inverse of the
conditional probability of receiving treatment level  that she indeed received.
Under  in the original population, treated and untreated are unconditionally
exchangeable in the pseudo-population because  is independent of .

L = 0
1/0.5

0.5 = Pr[A = 0|L = 0]

A = a
Y a ⊥⊥ A|L

L A
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Standardisation and inverse probability weighting (IPW)

Standardisation and IPW are equivalent
IPW uses conditional probability of treatment A given covariate L
Standardisation use probability of covariate L and conditional probability of outcome Y
given A and L
Adjusting for L
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3. Observational studies

Outline

Randomised assignment (Recap)
Instrumental variables
Regression discontinuity design
Di�erence-in-di�erences
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Introduction

Randomisation forms gold standard for causal inference, because it balances observed
and unobserved confounders.

A randomised experiment is an experiment with the following properties:

1. Positivity: assignment is probabilistic: 
No deterministic assignment.
Making treatment or intervention groups as similar as possible within subgroups.

1. Unconfoundedness: 
Treatment assignment does not depend on any potential outcomes (baseline
characteristics and outcomes).
Sometimes written as 

0 < pi < 1

P [Ai = 1|Y (1),Y (0)] = P [Ai = 1]

Ai ⊥⊥ (Y (1),Y (0))
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Why do Experiments Help?

In an experiment we know that treatment is randomly assigned. Thus we can do the
following:

When all goes well, an experiment eliminates selection bias.

E[Yi|Di = 1] − E[Yi|Di = 0]

= E[Yi(1)|Di = 1] − E[Yi(0)|Di = 0]

= E[Yi(1)|Di = 1] − E[Yi(0)|Di = 1] + E[Yi(0)|Di = 1] − E[Yi(0)|Di = 0]

= E[Yi(1) − Yi(0)|Di = 1]


ATT

+ E[Yi(0)|Di = 1] − E[Yi(0)|Di = 0]


Selection bias

E[Yi(1)|Di = 1] − E[Yi(0)|Di = 0]

= E[Yi(1)|Di = 1] − E[Yi(0)|Di = 1]

= E[Yi(1)] − E[Yi(0)]
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Why we need observational studies to evaluate interventions

Randomized controlled studies are considered the gold standard for causal e�ects
estimation but are at times:

1. Unnecessary
2. Inappropriate - HIV as a causal agent for AIDS; smoking as a cause of lung cancer
3. Impossible - infrequent outcomes and rare events
4. Inadequate

What are the main challenges of causal inferencein observational study?

1. Lack of control
lack of balance - confounding bias
lack of comparability - selection bias

2. Unmeasured confounders
3. Time-varying confounders
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Estimating causal e�ects from observational data

Unlike randomised experiments, in observational studies researchers cannot assign study
subjects into treatment or control groups using a random mechanism,

makes it very di�cult to draw a causal relationship between the treatment and the
observed outcomes.

Therefore, to control confounding and arrive at a causal estimate, broadly there are two
approaches

Use statistical adjustment: (rely on the assumption, no remaining unmeasured
confounding)
Use design-based methods: (to address unmeasured confounding)
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In observational studies treatment is not independent of potential outcomes
Individuals receiving treatment A may not be comparable to those receiving treatment B

sicker, older, poorer, less adherent
di�erences in outcomes may be a re�ection of these di�erences

Di�erence of observed average response may be a biased estimate of the causal e�ect

Solution:

1. Identify all confounders 
2. Potential responses  are independent of treatment exposure among subject with

the same  values
3. Estimate di�erences within strata

W
(Y0;Y1)

W
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What is confounding?

Confounding is the bias caused by common causes of the treatment and outcome.
arise when exposure and outcome share an uncontrolled common cause.

Observed confounders refer to confounders for which measures are available in the study
data.

Residual confounding is any confounding bias that remains after conditioning on
observed confounders, either due to

variables not observed in the data (unmeasured or unobserved confounding),
inadequate measurement or
modelling of observed confounders.

In observational studies, the goal is to avoid confounding inherent in the data.

No unmeasured confounding assumes that we've measured all sources of confounding.

51 / 124



The most common methods to reduce the impact of confounding are:

Restricting the study sample to one level of the confounding variable,
Stratifying (analysing each gender separately) or
Matching (selecting the sample so that the exposed and unexposed groups have the
same gender balance).

Other methods for confounder adjustment include:

multivariable regression (including confounders as covariates) and
inverse probability (or propensity score) weighting.
G-methods:

G-computation uses a statistical model (eg, a regression model)
relies on the statistical model being correctly speci�ed.

Marginal structural models (commonly using IPWT).
G-estimation - predicts the counterfactual outcome at each time point.
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Causal effects estimation in observational studies

Analyze the data as if treatment was randomized, conditional on measured covariates.

Condition 1: exchangeability

In marginally randomized experiments, 
In conditionally randomized experiments, 
In observational studies

Reasons for receiving treatment are likely associated with some outcome predictors
Distribution of outcome predictors vary between treated and untreated groups.
Conditional exchangeability will not hold if there exits unmeasured independent
predictors U of outcome such that probability of receiving treatment A depends on U
with strata L
Exchangeability is not veri�able in observational studies

Y a|A
Y a ⊥⊥ A|L
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Condition 2: positivity

There is probability greater than zero of being assigned to each of the treatment levels
 or 

In observational studies, positivity is not guaranteed, however, it can be sometimes
empirically veri�ed

Condition 3: Consistency

A de�ned standardized treatment exists with no variation (no multiple versions of the
same treatment)
In observational data, we have no control over the versions of treatments - use restriction

Pr[A = a] > 0 Pr[A = a|L = l] > 0, ∀l : Pr[L = l] ≠ 0
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Causality with Unmeasured Confounding

Unmeasured Confounding

Consider cases of measured confounding

In this case we block the backdoor path  by conditioning on X.

What happens in the general case where X is unobserved?

The above methods rely on an assumption of no unmeasured confounding

(ie, conditional exchangeability), which is often not plausible in
observational study designs.

T ← X → Y
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If there exist unmeasured confounders that may be a common cause of both the
outcome and the treatment,

impossible to accurately estimate the causal e�ect using above methods.
We will use Design methods.
These designs are often called quasi-experimental designs or natural experiments:

difference-in-difference (DiD),
regression discontinuity (RD), and
instrumental variables (IV)

Problem

Subject to certain unprovable assumptions,
By exploiting some assignment mechanism
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Difference-in-Differences (DiD)

The DiD design is a quasi-experimental alternative to the well understood and straight
forward RCT design.

use data from treatment and control groups to obtain an appropriate counterfactual
to estimate a causal e�ect.

DiD methods exploit variation in time (before vs. after) and across groups
(treated vs. untreated) to recover causal e�ects of interest.

Pre vs. Post comparisons

Compares: same individuals before and after program.
Limitation: Does not account for potential trends in outcomes.

Treated vs. Untreated comparisons
Compares: participants to those who have not experienced treatment (at least not
yet).
Limitation: Selection - is participation driven by other factors?
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DiD combines these two approaches to avoid their pitfalls.

The DiD approach includes a before-after comparison for a treatment and control group.

This is a combination of:

a cross-sectional comparison (= compare a sample that was treated to an non-treated
control group)
a before-after comparison (= compare treatment group with itself, before and after
the treatment)

The before-after di�erence in the treatment group gets a correction, by accounting for the
before-after di�erence in the control group, eliminating the trend problem.
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DiD- Graphically
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Derivation

We assume that the outcome is determined by , where i
indexes the unit of observation and t indexes time.

 is a variable(s) do not change by time but do change by unit.

 is a variable(s) do not change by unit but can change by time.

 is an unexplained, random error.

Yit = ci + dt + δDit + ηit

ci

dt

ηit
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Di�erencing

1) Treated group after and before:

2) Control group after and before:

The di�erence of the di�erences (1)-(2) is .

we can extend our notation to condition for a vector of covariates ,

So now we have:

.

E[Yi1|Di = 1] − E[Yi0|Di = 1] = ci + d1 + δ1 − (ci + d0 + δ0)

E[Yi1|Di = 0] − E[Yi0|Di = 0] = ci + d1 − (ci + d0) = d1 − d0

ATE = d1 − d0 + δ − (d1 − d0) = δ

Xit

Yit = ci + dt + δDit + X0itβ + ηit
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Estimation

We often do a before and after comparison, even when we have more time points.
So we only need four means to estimate a DiD design.

A before and after comparison of outcome Y for the treated is: .

We want to compare that di�erence with the di�erence in the control:
.

The estimate of interest is: .

No regression model here yet, but we could estimate those four means

parametrically or nonparametrically or semiparametrically.

The di�erence above is the same as: 

E[Ytpost] − E[Ytpre]

E[Ycpost] − E[Ycpre]

DiD = E[Ytpost] − E[Ytpre] − E[Ycpost] − E[Ycpre]

DiD = E[Ytpost] − E[Ycpost] − E[Ytpre] − E[Ycpre]
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Assumptions of DiD

1. Parallel Trend Assumption

Without treatment, the average change/trend in the outcome variable would be the same
in the two groups (Mora 2015).

To obtain an unbiased estimate of the treatment e�ect one needs to make a parallel
trend assumption.

i.e. Treatment group would have had the same changes as the control group in
absence of the treatment (counterfactual outcome).
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2. Stable unit treatment value assumption (SUTVA)

Subject's potential outcome depends only on its own treatment status, not by treatment
status by the other unit.

3. No Spill-Over E�ects assumption

The members of the comparison group should not be a�ected by the intervention.

4. Covariate balance test

On average, both observable and unobservable characteristics should not vary between
both groups.
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DiD Practicalities in : 2 Period, 2 Group Design
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Regression Discontinuity Design

Regression discontinuity design (RDD) is a quasi-experimental method used to estimate
the causal e�ect of an intervention by examining the impact of a threshold on an outcome
variable.

Many programs determine eligibility through the use of continuous indices or scores:

Anti-poverty programs  Targets households under a speci�c income level or poverty line

Education  Scholarship for the best students based on a standardized test
Agriculture  Fertilizer program targeted to small farms less than given number of
hectares)

Farmers with  hectares are eligible
Farmers with  hectares are ineligible

⇒

⇒
⇒

≤ 50
> 50
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At Baseline At Post Intervention

Regression Discontinuity Design

We need a continuous eligibility index with a de�ned eligibility cuto� point

The basic idea is to compare the outcomes of individuals who are just above and below a
threshold that determines whether they receive an intervention or not.

RDD is useful when it is impossible or unethical to randomly assign individuals to
treatment and control groups.
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RDD can be used to establish causal inference by controlling for confounding variables
that might otherwise distort the causal relationship.

In particular, RDD can control for selection bias that can occur when individuals self-select
or are selected for an intervention based on their characteristics.

The key steps in RDD are as follows:

1. Identify the threshold: Determine the threshold value of a continuous variable that
separates individuals into treatment and control groups.

2. Determine the outcome variable: Specify the outcome variable that re�ects the impact
of the intervention.

Then estimate the causal e�ect using a regression model by comparing the outcomes of
individuals just above and below the threshold.

Test the robustness of the results by varying the bandwidth of the threshold,
controlling for additional covariates, and checking for violations of assumptions.
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Practice in R

Here is an example of how to implement these steps using the RDD package in R:

# Load the data into R

data <- read.csv("data.csv")# Explore the data

plot(data$running_var, data$outcome)# Estimate the treatment effect using a linear reg

model_linear <- rdd::rdd_data(x = data$running_var, y = data$outcome, cutpoint = 0, sl

summary(model_linear)# Estimate the treatment effect using a nonparametric model

model_np <- rdd::rdd_data(x = data$running_var, y = data$outcome, cutpoint = 0, slope 

summary(model_np)# Plot the results

plot(model_linear)# Conduct sensitivity   analyses 

rdd::rdd_bw(model_linear)

rdd::rdd_rdplot(model_linear)
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Instrumental Variables

An IV is a variable that causes some variation in the exposure and is unrelated to the
outcome except through the exposure.

IVs are often used to identify the causal e�ect of a particular exposure or treatment on an
outcome of interest.

If we have an instrument, we can deal with unmeasured confounding in the treatment-
outcome relationship.

It is going to turn out that the same construction will let us deal with non-compliance in
experiments.
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Assumptions for using IV

1. The IV is correlated with the exposure or treatment of interest:

The IV should be able to predict the level of the exposure or treatment.

2. The IV is not directly related to the outcome:

The IV should only be associated with the outcome through its e�ect on the exposure
or treatment.

3. The IV is independent of the error term:

There should be no correlation between the IV and the error term in the outcome
equation.
If these assumptions are met, then using IVs can lead to more accurate estimates of
the causal e�ect of interest.
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Assumption

In Figure, Z is an IV to the e�ect of X on outcome.
IV relies on three main conditions.
A valid IV, Z, must (i) predict treatment status (relevance), (ii) only a�ect outcome through
X (exclusion), and (iii) be as good as randomly assigned (independence).
These conditions are met as there's a causal path  and no open paths between Z
and outcome except through X.

Z → X
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Example
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4. Method for estimating causal effects in observational data

Outline

Introduction
Inverse Probability Weighting
Stabilized Weights
Standardisation/G-Computation

Objectives

Establish conditions under which observational studies can be used to estimate causal
e�ects
Highlight some commonly used methods in causal inference with observational data
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Introduction

Observational data are often the basis for epidemiological and other investigations
seeking to make inference on the e�ect of treatment exposure on a response.
Randomized studies aim to balance distributions of subject characteristics across groups,
so that groups are similar except for the treatments.

With observational data:

Treatment exposure may be associated with covariates that are also associated with
potential response
Groups may be seriously imbalanced Unbiased treatment comparisons from
observational data require methods that adjust for such confounding
Inferences with a causal interpretation cannot be made without appropriate adjustment.
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Estimating Causal E�ects from observational data

In randomized controlled studies, average causal e�ect = di�erence in outcomes between
the two groups

The mean outcome among treated equals mean treated counterfactual because
treatment is independent of potential outcome In observational studies treatment is not
independent of potential outcomes

In observational studies, individuals receiving treatment A may not be comparable to
those receiving treatment B

sicker, older, poorer, less adherent
di�erences in outcomes may be a re�ection of these di�erences
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Estimating causal e�ects from observational data

Treatment may not be independent of counterfactuals - same characteristics that led to
treatment exposure may also be associated with potential response.
Di�erence of observed average response may be a biased estimate of the causal e�ect.
Solution:

Identify all confounders 
Potential responses  are independent of treatment exposure among subject
with the same W values
Estimate di�erences within strata

W
(Y 0,Y 1)
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Designing observational studies

How would the study be conducted if it were possible to do it by

controlled experimentation?

De�ne study population
Eligibility and exclusion criteria - restriction
De�ne Exposure - what are the treatments/intervention groups
Pre-exposure covariates
De�ne outcome

Challenge

Achieving balance between intervention groups
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Example: observational study

In an observational study of heart transplant and mortality, those who receive a
transplant have a severe heart condition

Those who receive the transplant would be expected to have a greater risk of mortality
had they not received the transplant compared to patients who did not received a
transplant.

This is a violation of 
(exchangeability).

An associational e�ect therefore does not estimate a causal e�ect.

Pr[Y a = 1 = 1|A = 1] = Pr[Y a = 1 = 1|A = 0]
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Addressing selection and confounding challenges

Use novel methods to mimic randomization

Strati�cation

Matching Propensity scoring

Matching or stratifying (Rosenbaum and Rubin, JASA 1984)

Inverse Probability Weighting (IPW)

Instrumental Variables (IV)
Sensitivity Analysis (SA)
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Causal e�ects estimation in observational studies

Analyze the data as if treatment was randomized, conditional on measured covariates.

Conditions necessary:

Values of treatment under comparison correspond to well de�ne interventions
corresponding to versions of treatment in the data
Conditional probability of receiving every value of the treatment depends only on the
measured covariates

Conditional probability of receiving every value of treatment is greater than zero

With these conditions, an observational study can emulate a conditionally randomized
experiment
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Causal e�ect of smoking cessation on weight gain

To estimate the e�ect of smoking cessation on weight gain we will use real data from the
NHEFS

NHEFS stands for National Health and Nutrition Examination Survey Data I Epidemiologic
Follow-up Study

Can be found at wwwn.cdc.gov/nchs/nhanes/nhefs/

A subset of the NHEFS data will be used with 9 measured covariates (L) to estimate the
ACE (1566 individuals)
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Causal e�ect of smoking cessation on weight gain
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Mean of Potential Outcomes/Counterfactuals

The mean weight gain that would have been observed if all individuals in the population
had quit smoking before the follow-up visit, 

The mean weight gain that would have been observed if all individuals in the population
had not quit smoking, E$E[Y^{a=0}]$.

The average causal e�ect on the additive scale: .

The di�erence in mean weight that would have been observed if everybody had been
treated compared with untreated.

E[Y a=1]

E[Y a=1] − E[Y a=0]
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Associational E�ect

Mean weight gain among quitters, .

Mean weight gain among non-quitters, .

Associational E�ect  with 95% CI 1.7 to 3.4

Use R to estimate the associational e�ect and the associated 95% con�dence interval

E[Y |A = 1] = 4.5

E[Y |A = 0] = 2.0

E[Y |A = 1] − E[Y |A = 0] = 2.5
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Average causal e�ect

If quitters and non-quitters are di�erent wrt characteristics that a�ect weight gain, then
the associational e�ect will not be equal with the average causal e�ect.

Check the distribution of covariates  between levels of  Check covariates association
with .

Age independently associated with both quitting and weight gain (regardless of quitting
status)  confounder of e�ect of  on .

E[Y a=1] − E[Y a=0]

L A
Y

⇒ A Y
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Estimation

There are two formulations for Pr[Y a = 1]

Pr[Y a = 1] = ∑
w

Pr[Y a = 1|W = w]Pr[W = w]

Pr[Y a = 1] = ∑
w

Pr[Y a = 1|W = w]
Pr[A = a]

Pr[A|W = w]
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Estimating IP weights using models …… (1)

IP weighting creates a pseudo-population in which the association between  and  is
removed.

The pseudo-population is created by weighting each individual by the inverse (reciprocal)
of the conditional probability of receiving the treatment level that he/she indeed received.

The associational e�ect in the pseudo-population would estimate the causal e�ect of A on
Y.

 ..... then dividual-speci�c IP weights for
treatment A.

With a multidimensional L, we can no longer estimate  non-parametrically

A L

W A = 1/f(A|L), f(A|L) = Pr[A = 1|L]

Pr[A = 1|L]
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Estimating IP weights using models …… (2)

The denominator  of the IP weights is the probability of quitting conditional on the
measured confounders, , for the quitters, and , for the non-
quitters.

For a dichotomous treatment A, we only need to estimate Pr [A = 1|L] since
 Use logistic regression model for the probability of

quitting smoking with all 9 confounders included as covariates.

Use linear and quadratic terms for the (quasi-)continuous covariates No product terms

The model restricts the possible values of $Pr [A = 1|L] such that, on the logit scale, the
conditional relation between the continuous covariates and the risk of quitting can be
represented by a parabolic curve

Each covariate’s contribution to the risk is independent of that of the other covariates.

f(A|L)
Pr[A = 1|L] Pr[A = 0|L]

Pr[A = 0|L] = 1 − Pr[A = 1|L]
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Estimating IP weights using models … (3)

Under these parametric restrictions, an estimate for  will be obtained for
each combination of L values, and therefore for each individuals (1566) in the study
population

All members of the study population are replaced by two copies of themselves.

One copy receives treatment value  and the other copy receives treatment value

The estimated IP weights WA ranges from 1.05 to 16.7, and the mean is 2

Pr[A = 1|L]

A = 1
A = 0
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Average causal e�ect using IP weights

To estimate  in the pseudo population, the saturated linear
mean model can be �tted .

Weighted least squares, with individuals weighted by their estimated IP weights.

The estimated β_1 is 3.4 that is, we estimated that quitting smoking increases weight by
3.4 on average.

To obtain a 95% con�dence interval around the point estimate, we need a method that
takes IP weighting into account

E[Y |A = 1] − E[Y |A = 0]
E[Y |A] = β0 + β1A
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95% con�dence interval for ACE

Use statistical theory to derive the corresponding variance estimator

Approximate the variance by non-parametric bootstrapping

Use robust variance estimator (standard option in most statistical software packages)

The 95% con�dence intervals based on the robust variance estimator are valid but
conservative–they cover the super-population parameter more than 95% of the time

If the model for  is misspeci�ed, the estimates of  and  will be biased
and, the con�dence intervals may cover the true values less than 95% of the time

Pr[A = 1|L] β0 β1
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Estimating stabilized IP weights using models … (1)

The IP weights  adjust for confounding by L

All individuals have the same probability of receiving A = 1 (prob. = 1) and A = 0 (prob. = 1)

A and L are independent in the pseudo population

There are other ways of creating pseudo population in which A and L are independent

A pseudo population in which all individuals have a probability of receiving  equal
to 0.5 rather than 1 and a probability of receiving  also equal to 0.5, regardless of
their values of L Stabilized IP weights 

W A = 1/f(A|L)

A = 1
A = 0

(SW A) = 0.5/f(A|L)
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Estimating stabilized IP weights using models … (2)

Pseudo-population would be of the same size as the study population.

The expected mean of the weights  is 1.

Deviations from 1 indicate model misspeci�cation or possible violations, or near
violations, of positivity.

The ACE obtained in the pseudo-population is the same for both weights ($W^A$ and
).

The same goes for any other IP weights p/f (A|L) with .

The IP weights  range from 0.33 to 4.30, whereas the IP Weights 
range from 1.05 to 16.70

Narrower range of the  weights because of the stabilizing factor f(A) in the
numerator

Stabilized weights, .

Non-stabilized weights, .

0.5/f(A|L)

SW A

0 ≤ p ≤ 1

f(A)/f(A|L) 1/f(A|L)

f(A)/f(A|L)

SW A

WA
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Average causal e�ect using stabilized IP weights

An estimate of the conditional probability  to construct the denominator of
the weights

The logistic regression will be used

Estimate  for the numerator of the weights: Non-parametric estimate or �tting
a saturated logistic regression model for  with an intercept and no covariates

Estimate the causal di�erence  by �tting the mean model
 with individuals weighted by their estimated stabilized IP weights

The estimated ACE = 3.4 kg (95% CI: 2.4, 4.5) on average

The same estimate obtained using non-stabilized weights 

Pr[A = 1|L]

Pr[A = 1]
Pr[A = 1]

E[Y a = 1] − E[Y a = 0]
E[Y |A] = β0 + β1A

W A
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Why we use stabilized IP weights?

Stabilized weights result in narrower 95% con�dence intervals than non-stabilized
weights.

In many settings (time-varying or continuous treatments), the weighted model cannot
possibly be saturated and therefore stabilized weights are used.
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Using logistic regression to estimate f (A|L)
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Estimated Causal E�ect of quitting smoking on weight gain
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Estimating standardized mean outcome
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5 Marginal structural models (MSM)

Introduce marginal structural models
Motivation for G-estimation
Out
Propensity Score (PS) Methods

Introduction and estimation of propensity scores
PS Strati�cation
PS Standardisation
PS Matching (PSM)
Weighting by the inverse propensity
Practical: propensity score estimation (strati�cation, matching)
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Readings:

Chpt 14. MH & JR
Chpt 15. MH & JR
Jo�e M, 2004
Lunceford J, 2004
D’Agostino RB, 1998
Rosenbaum PR, 1998
Rosenbaum PR, 1987
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Objectives

Introduce marginal structural models
Motivate for G-estimation
Review outcome regression
Introduce propensity scores
Estimation of propensity scores
Applications of propensity score to control for counfounding
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Introduction

Recap

Interested in estimating the e�ect of a treatment or exposure
Standard regression models .
We include confounders in the structural model
But some of the W maybe mere nuisance variables of no interest

Potential outcome densities

Let  be the joint density of the potential outcomes .
Let  be the density of potential outcome  - marginal density.
Joint density is not estimable but marginal density is estimable from observed data.
Comparison of marginal densities  and  for  represent causal
e�ects

E[Y |A,W ]

f(Y |L) Y = Y a

f(Y |L) Y a

f(Y a|L) f(Y a′

|L) (a ≠ a′)
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Marginal structural models

Consider the model: 
Keep variables of little interest out of the structural part of the model while still controlling
for counfounding
The model is known as a marginal structural mean model
The parameter  correspond to the average causal e�ect

Conditions for MSM estimation

1. A is discrete
2.  conditional exchangeability
3.  positivety

E[Y a] = β0 + β1a

β1

Y a ⊥⊥ A⟹
Pr(A = a|W ,Y a = Pr(A = a|W) > 0⟹
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Estimation of Marginal Structural Models

i. Model association between W and A

ii. Derive weights from model

iii. Use weights to create pseudo-population in which W are not associated with A

iv. Estimate parameters in the MSM using weighted methods
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Example: Estimating e�ect of change in smoking intensity on weight gain

In this case, treatment takes many values
Interest: di�erence in average change in weight under di�erent changes in smoking
intensity

Use IP weights to estimate the parameters 
Stabilized weights 
But  is di�cult to estimate for continuous A - you have to rely on strong
assumptions on the pdf of A

Exercise 4: G-computation simulation: Snowden paper simulation

E[Y a] = β0 + β1a + β2a
2

β
f(A)/f(A/L)

f(A/L)
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Propensity scores methods

Outcome Regression

Consider the structural model: 
The causal parameter are  and .
Our estimates of  and  are consistent if only  and  correctly models the
dependence of  on .

 and  are known as nuisance parameters
If exchangeability, positivity and well de�ne treatments holds, then the causal parameters
can be estimated using the usual regression model on the observed.

Propensity scores: an introduction

Let 

In randomized studies  is the same within strata of L
In observational studies,  is unknown and has to be estimated Common estimate is
the logistic model for binary treatments

E[Y a|L] = β0 + β1a + β2aL + β3L

β1 β2

β1 β2 β0 β3L
E[Y a|L] L

β0 β3

p(L) = Pr[A = 1|L]
0 ≤ p(L) ≤ 1

p(L)
p(L)
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Distribution of propensity scores between quitters and non-quitters
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Example: propensity scores for quitters

Quitters have a higher propensity to quit smoking
Di�erence in the distribution of the propensity  confounding by 
Similar propensity scores between individuals does not imply equal 
Within levels of , covariates (measured) are balanced between treated and untreated

Key results:

1. 
2. Positivity with levels of p(L) holds  positivity in levels of L
3.  can be used to estimate causal e�ects using:

strati�cation
standardization
matching

⇒ L
L

p(L)
A ⊥⊥ L|p(L)

(Y a) ⊥⊥ A|L) ⇒ (Y a) ⊥⊥ A|p(L)
⟺

p(L)
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Estimating average causal e�ects with  strati�cation

Under exchangeability and positivity,

 is a continuous variable, therefore unlikely to have two individuals with same score
Create strata of individuals with similar propensity scores
Use deciles or quintiles and estimate strata speci�c e�ects
Average across strata using standardization

Potential complications

If distribution of  di�ers between treated and untreated in some strata, then
exchangeability is violated

p(L)

E[Y a = 1|p(L) = s] − E[Y a = 0|p(L) = s] = E[Y |A = 1, p(L) = s] − E[Y |A = 0, p(L) =

p(L)

p(L)
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Regression with propensity scores

Fit a regression with A, the 9 indicators and 9 product terms between A and decile
indicators of the deciles:

Can also use  as a continuous variable in the model
To guard against misspeci�cation of the model use �exible models (e.g. cubic splines
rather than linear models in )

E[Y |A, l(p(L)]

p(L)

p(L)
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Propensity score matching

Create a matched population in which treated and untreated are exchangeable because
they have same distribution of .

Under exchangeability and positivity give , association measures in the matched
population are consistent estimates of causal e�ect measures.

Close values in  - caliper matching .

p(L)

p(L)

p(L) (s ± 0.005)
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Software

R: Matchit
Stata: te�ects psmatch

Potential problems with propensity matching

Bias-variance tradeo� based on closeness
Matching does not distinguish between random (assumed in regression modeling) and
structural nonpositivity in the non-overlap region
Matched population might be di�erent from target population
Hard to transport results to other populations when restriction is based on propensity
score

Weighting using PS: Recap

Weights  or stabilized weights
Estimation in pseudo-population using weighted regression

p(L) = Pr[A = a|L]
W A = 1/Pr[A|L]
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Application to quit smoking data

Estimate propensity score
Check for balance of covariates between intervention arms
Create strata (5 or 10)
Use standardization to get marginal e�ect
Use the regression approach
Using matching
Use inverse weighting
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6. Doubly Robust (DR) estimators - combination methods

The concept of DR estimators
Augmented Inverse Probability of Treatment Weighted (AIPTW) Estimator
Targeted Maximum Likelihood Estimation (TMLE)
Practical: Introduce implementation of estimators in R
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7. Marginal Mean Weighting through Stratification (MMWS)

Outline

Objectives
Introduction
Marginal Mean Weighting through Strati�cation
Example: Implementation in R
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Objectives

1. Introduce marginal mean weighting and strati�cation estimators

2. Demonstrate with examples

3. Highlight strengths and weaknesses of MMWS

Readings:

1. Linden A, 2014

2. Huang, I, 2005

3. Hong G, 2010 & 2012
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Recap propensity score methods

Comparability between treatment groups achieved through:

1. Matching (one-to-one, , mahalanobis distance, kernel density matching)

2. Strati�cation (deciles or quintiles (90% of bias removed)

3. Weighting (IPTW - standardize treatment groups to population for which treatment is
intended, AIPTW)

p(W) = Pr[A|W ]

1 : k,nn
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MMWS

Combine propensity strati�cation and IPTW

i. Stratify sample into quantiles of propensity score

ii. Generate weight for each individual based on corresponding stratum and treatment
assignment

iii. Estimate the strata-speci�c weighted means
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E�ect of maternal smoking intensity during pregnancy on birth weight

mkbwt.dta

variables: description & codes

bweight: infant birthweight (grams)
mmarried: 1 if mother married
mhisp: 1 if mother hispanic
fhisp: 1 if father hispanic
foreign: 1 if mother born abroad
alcohol: 1 if alcohol consumed during pregnancy
deadkids: previous births where newborn died
mage: mother’s age
medu: mother’s education attainment
fage: father’s age
fedu: father’s education attainment
nprenatal: number of prenatal care visits
monthslb: months since last birth
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order: order of birth of the infant
msmoke: cigarettes smoked during pregnancy
mbsmoke: 1 if mother smoked
mrace: 1 if mother is white
frace: 1 if father is white
prenatal: trimester of �rst prenatal care visit
birthmonth: month of birth
lbweight: 1 if low birthweight baby
fbab: 1 if �rst baby
prenatal1: 1 if �rst prenatal visit in 1 trimester
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Estimate propensity score

E[mbsmoke = 1|mmarried, mage, fbaby, medu]
Use logistic regression
Save predicted probabilities for each individual
Generate weights of treatment received (WA)

Strati�cation

Identify regions of common support
Out of support individuals get a weight of zero
Stratify propensity score into quintiles (5) or deciles (10) (equal size)
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Marginal mean weights (MMW)

Calculate MMW for each treatment group by stratum

Assign weights for each individual corresponding to their stratum and treatment
assignment

W s =
ns ∗ Pr(A = a)

nA=a,s

W = W A ∗ W s
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8. Causal inference from survival and longitudinal data
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